
A

Volatile STT-RAM Scratchpad Design and Data Allocation for Low
Energy

GABRIEL RODŔIGUEZ and JUAN TOURIÑO, Universidade da Coruña

and MAHMUT T. KANDEMIR, Pennsylvania State University

On-chip power consumption is one of the fundamental challenges of current technology scaling. Cache

memories consume a sizable part of this power, particularly due to leakage energy. STT-RAM is one of several

new memory technologies that have been proposed in order to improve power while preserving performance.
It features high density and low leakage, but at the expense of write energy and performance. This paper

explores the use of STT-RAM-based scratchpad memories that trade non-volatility in exchange for faster

and less energetically expensive accesses, making them feasible for on-chip implementation in embedded
systems. A novel multi-retention scratchpad partitioning is proposed, featuring multiple storage spaces

with different retention, energy, and performance characteristics. A customized compiler-based allocation
algorithm suitable for use with such a scratchpad organization is described. Our experiments indicate that

a multi-retention STT-RAM scratchpad can provide energy savings of 53% with respect to an iso-area,

hardware-managed SRAM cache.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories; B.3.3

[Memory Structures]: Performance Analysis and Design Aids; D.3.4 [Programming Languages]: Pro-

cessors—Memory Management

General Terms: Design, Performance

Additional Key Words and Phrases: Scratchpad, STT-RAM, Relaxed-retention

1. INTRODUCTION

In the early 2000s computer architecture trends switched to multicore scaling as a response
to various architectural challenges that severely diminished the gains of further frequency
scaling. This approach has enabled processors to take advantage of increasing transistor
counts, according to Moore’s Law, for the last decade. In order to keep dynamic power con-
sumption of CMOS transistors constant when increasing their number, supply and thresh-
old voltages are scaled with feature size. However, this exponentially increases subthreshold
voltage and, therefore, static power consumption. In current technologies, leakage energy
is large enough as to be comparable to dynamic energy. As a result, current processors are
rapidly approaching the power wall [Borkar and Chien 2011].

Besides, multicore scaling makes the memory wall problem ever worse. As the number
of cores increases, so does the stress on the memory hierarchy. As a result, larger on-chip
caches are required to avoid the main memory bottleneck. On-chip caches using SRAM
memory typically represent up to 45% of the on-chip energy consumption, and more than
50% of on-chip area [Banakar et al. 2002].

Various new memory technologies have been proposed to improve on the weaknesses of
SRAM. STT-RAM is one of these non-volatile technologies, which has also been proposed
as a main memory alternative [Kultursay et al. 2013]. It features much better endurance and
performance than other magnetic memory technologies. Compared to SRAM, it is up to 4x
denser and has much lower leakage energy. This enables the implementation of very large on-
chip memories with near-zero static consumption, which alleviates both main memory stress
and power consumption. However, STT-RAM features higher access energy and latencies
than SRAM, making it unsuitable for the implementation of on-chip memories. Storage-
class STT-RAM preserves data for at least 10 years, which is a much larger time span than
the typical on-chip data retention. Relaxing this non-volatility [Smullen et al. 2011a] has
been proposed as a means to reduce access latency and dynamic energy in order to make
the technology competitive for on-chip memories.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Scratchpad memories (SPM) [Banakar et al. 2002; Panda et al. 1997] are fast, software-
controlled on-chip memories. Architecturally, their main difference with a conventional
hardware-managed cache is that an SPM does not require a tag array nor tag compari-
son logic. As a result, both area and energy per access are reduced when compared to a
cache of the same capacity. The application is responsible for efficiently allocating data to
the scratchpad, either explicitly or with the aid of the compiler. If it is possible to pre-
dict which data will be accessed in an application-custom manner, as is usually the case
for applications in the embedded domain, then an SPM can provide significant energy and
performance advantages [Yanamandra et al. 2008; Shaffer et al. 2010].

This paper proposes the implementation of on-chip SPMs using STT-RAMs with relaxed
volatility as a means to further take advantage of the area and energy characteristics of this
technology. Specifically, our main contributions are:

— The proposal of a multi-retention STT-RAM-based SPM architecture and design method-
ology for embedded systems. More specifically, the SPM is divided into multiple “regions”,
each with different performance, power and retention characteristics.

— A novel compiler-based data allocation algorithm customized for the proposed multi-region
SPM design. Short-lived data are brought on-chip using fast, low energy regions. Longer-
lived tiles are accommodated to regions with higher retention, capable of fully exploiting
their locality.

— An experimental evaluation showing that the proposed design offers potential savings in
energy consumption over 60% when compared with different iso-area on-chip memory
designs.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3
describes the relevant architectural features of STT-RAM memories, and details the design
process for a multi-retention SPM built with relaxed volatility STT-RAM. Section 4 covers
the allocation algorithm proposed to take advantage of the proposed memory architecture.
Section 5 evaluates the benefits of the multi-retention SPM using several benchmarks and
on-chip memory organizations. Finally, Section 6 concludes the paper.

2. RELATED WORK

Esmaeilzadeh et al. [2011] predicted that, in the following years, an increasing fraction of
the chip will be dark silicon, i.e., either idle or significantly underclocked. Taylor [2012]
has observed a trend to exploit this dark silicon to introduce specialized functional units
that exploit the particularities of a computation to achieve power efficiency. Venkatesh
et al. [2010] introduce the concept of “conservation cores”: specialized processors that focus
on reducing energy instead of increasing performance, used for computations that cannot
take advantage of hardware acceleration. Hardavellas et al. [2011] propose a server-oriented
architecture with specialized cores for different workloads. Kultursay et al. [2012] design an
architecture that includes CMOS and TFET cores and an automated runtime scheme to
maximize performance under a fixed power budget.

In recent years many works have focused on power efficiency through the use of new
memory technologies. Phase change memory has been proposed as an alternative to DRAM
for main memory [Lee et al. 2010; Coburn et al. 2011; Qureshi et al. 2009]. Other works focus
on the usage of STT-RAM as a main memory technology [Kultursay et al. 2013]. In order
to use STT-RAM to implement on-chip memories, its latency and energy consumption need
to be reduced. Guo et al. [2010] propose to implement much of the combinational logic and
on-chip storage using scalable RAM blocks, and rearchitecting the pipeline. Rasquinha et al.
[2010] work at the microarchitectural level to avoid premature eviction of lines from L1 to
L2 and subsequent move back to L1. Smullen et al. [2011a] modify the physical properties
of STT-RAM cells to relax their non-volatility and, in turn, improve latency and energy.
These cells are used with a simple refresh policy to build efficient caches. Sun et al. [2011]

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

propose to use different retention levels in different cache regions. L1 caches are implemented
using fast, low retention cells. Lower level caches are implemented using hybrid designs
including volatile and non-volatile regions. A migration policy between regions based on
write intensity of each cache block is developed. Jog et al. [2012] also trade off non-volatility
for performance, but they focus on optimizing the refresh interval and employ a secondary
buffer to minimize the number of writebacks to main memory due to the expiration of a dirty
cache line that is still being used. Li et al. [2013b] design an N-refresh scheme and associated
coherence protocol for volatile STT-RAM caches. They also propose a compiler-assisted
scheme to rearrange the data layout in a way that minimizes active refreshes, which consume
extra energy, by strategically timing application writes (passive refreshes) [2013a]. Bathen
and Dutt [2012] use a memory manager to virtualize a hybrid address space with both
SRAM and MRAM scratchpads, allowing programmers and compilers to specify memory-
aware allocation policies at compile time that get enforced during runtime. Hu et al. propose
a dynamic programming algorithm to find the optimal allocation of an SRAM/NVM hybrid
SPM for both single-core [2013] and multicore embedded systems [2014]. Wang et al. [2013]
also use a hybrid system with SRAM and STT-RAM regions, alleviating the write latency
and energy by using perpendicular MTJs, and allocating most-written data to the SRAM
SPM and most-read data to the STT-RAM SPM.

A number of works have focused on how to allocate data to an SPM. Static methods
decide on a single allocation for the entire program, which never changes during runtime.
This avoids runtime transfers between main memory and the scratchpad, but does not adapt
to the changing working set of the application. Avissar et al. [2002] find the optimal static
allocation using integer linear programming. Li et al. [2012] use a graph-coloring approach
to allocate a hybrid SPM containing both an SRAM region and a non-volatile STT-RAM
region. Dynamic schemes are able to exploit locality more efficiently. Kandemir et al. [2001]
propose a dynamic method that maximizes the reuse of data tiles using both loop and data
transformations for affine accesses. Udayakumaran et al. [2006] employ a dynamic allocation
method for general applications where data movements between DRAM and scratchpad are
under the control of the compiler.

The present work builds on the volatile STT-RAM cells proposed by Smullen et al.
[2011a] to implement a novel scratchpad memory organization containing different regions
with distinct retention, energy, and performance characteristics. An original reuse-guided
method that takes into account variable lifetimes is then employed to dynamically allocate
data to the scratchpad exploiting the different characteristics of each particular region. The
multi-retention scratchpad can be seen as a form of specialization of the on-chip memory,
that can provide significant energy gains for codes with well-defined memory access patterns,
as is usually the case in embedded applications.

3. STT-RAM-BASED SCRATCHPAD DESIGN

As mentioned in Section 1, scratchpad memories can improve energy and performance over
caches for embedded applications. As opposed to SRAM, STT-RAM offers the opportunity
to include large on-chip SPMs with near zero-leakage. However, these benefits come at the
expense of write energy and latency. Consequently, any attempt to replace an SRAM-based
SPM with an STT-RAM-based one should address the associated performance degrada-
tion and potential power increase. One way of achieving this is to relax the non-volatility
properties of standard STT-RAM cell designs. This section covers the design of an STT-
RAM-based multi-retention SPM, first reviewing the design of the STT-RAM memory cell
and then covering how to partition the space and select the technological parameters.

In an STT-RAM cell an access transistor is connected to a memory element, in a design
similar to the 1T1C DRAM cell. With STT-RAM, however, the memory element is imple-
mented using a Magnetic Tunnel Junction (MTJ). An MTJ consists of two ferromagnets
separated by an insulating layer. One of the ferromagnets has a fixed magnetization, while

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

b
it lin

e

word line

so
u
rce

 lin
e access

transistor

in
su

la
to

r

free
layer

fixed
layer

Fig. 1. STT-RAM cell.

the other is allowed to change in response to electrical currents flowing through the device.
The general scheme is shown in Figure 1. The magnetization of the free layer can be parallel
or anti-parallel with respect to that of the fixed layer. Its orientation affects the resistance
that the MTJ opposes to a current flowing through it. This effect is used to implement
the memory behavior of the device. In order to read the stored value, a small voltage is
applied between the MTJ terminals. The current flowing through the device is sensed, and
the magnetization state is determined as a result.

The orientation of the free layer will not be maintained in time indefinitely. Eventually,
a random bit flip will occur. The probability distribution of this event, and therefore the
expected retention time of an MTJ, depends on its thermal stability ∆, which itself depends
on the physical parameters of the MTJ [Diao et al. 2007]. In particular, ∆ ∝ V , the volume
of the MTJ. In this work we use the approximation by Rizzo et al. [2002] to the retention
time r, shown in Eq. (1). We use this single bit retention time to approximate the MTTF
of the entire memory array. All designed memories use ECC.

r ' 1 ns× e∆ (1)

Switching the free layer magnetization of an MTJ is an operation that may take anywhere
between picoseconds to tenths of nanoseconds, depending on the MTJ build and the in-
tensity of the applied current [Diao et al. 2007]. In this work we focus on the precessional
switching operational mode. This is the physical model that characterizes magnetization
changes of the free layer when using an operational current density J much higher than
the intrinsic switching current density Jc0, which is dependent on physical parameters of
the MTJ. The time required for a magnetization reversal in precessional switching is at or
below 3 ns, providing quick operation as required by on-chip memories. However, the write
current Ic(τ) necessary to activate a precessional switching process increases as the write
pulse length τ decreases according to Eq. (2), where A is the MTJ area, C and γ are fitting
constants [Smullen et al. 2011a].

Ic(τ) = A ·
(
Jc0 +

C

τγ

)
(2)

Jc0 is proportional to the thickness of the MTJ. However, it is not dependent on its area.
As such, according to Eqs. (1) and (2), reducing the area of the MTJ reduces both its
retention time and the operational current, while not affecting the intrinsic current density.
In the following we assume that retention changes are obtained by modifying the MTJ area,
while all other physical parameters remain constant. Another approach for the fabrication
of relaxed-retention MTJs, as proposed by Sun et al. [2011], is to modify other physical
parameters of the MTJ, such as the saturation magnetization, effective anisotropy, or free
layer thickness, while leaving the MTJ size constant and equal to the smallest feature size.
This method is potentially more energy efficient than simply downsizing the MTJ, as it can
reduce Jc0, and therefore could improve the results obtained by our approach. Note that
the MTJ fabrication method is completely orthogonal to our proposal, which is focused on
designing and efficiently using multi-retention SPMs.

When using a volatile scratchpad, there must be a mechanism in place to ensure that data
are not accessed past the decay time of the memory. Besides, it is necessary to write modified

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

data back to main memory once it is close to expiration. Using a refresh mechanism implies
a trade-off between static and dynamic energy consumption. Selecting a low retention for
the MTJ implies low dynamic consumption, but refresh frequency and therefore static
consumption –which is otherwise not a factor in magnetic memories– are increased. If a
higher retention is selected, the increase in the MTJ area implies an increase in the write
current, and therefore in dynamic consumption. Note that refresh operations impact the
memory bandwidth. A writeback-and-invalidate mechanism would require the realization
of a memory controller to periodically check the state of each block, which both increases
energy consumption and takes up on-chip area.

The approach proposed in this paper is to rely on the compiler to allocate data to the
scratchpad and use it within its retention frame. To our knowledge, this is one of the first
attempts to compiler-guided, retention-aware data placement in STT-RAM-based SPMs.
Since the live time of a given piece of data is variable and application-dependent, it would
be desirable to have different scratchpad regions with different retention, energy, and per-
formance characteristics.

Previous works [Jog et al. 2012; Liang et al. 2007] have studied the optimal refresh
intervals of different levels of cache by analyzing liveness time of cached data. They conclude
that most data get refreshed after microseconds on an L1 cache. If we analyze the L2 cache,
then the majority of the data will be refreshed after a few milliseconds. Other data are alive
for variable, larger times. To adapt our scratchpad space to these findings, we create the
following “retention regions”:

— 1 ms: to allocate the shorter-lived data.
— 100 ms: to allocate the data that is alive for a few milliseconds.
— 10 s: this should accommodate most of the remaining data that goes through the cache,

while providing energy gains with respect to a non-volatile option.
— 10 years: this is provided as a fall-back region. The compiler will default to it when it

cannot guarantee a WCET for a region of code, or when an application-wide allocation is
found to be the optimal choice.

We used the STeTSiMS simulation and modeling system [Smullen et al. 2011b] to design
the memories. This framework provides performance, energy, and area numbers. It is con-
figured to automatically select optimal architectural parameters (e.g. number of banks) to
optimize the cell for different design goals. The baseline cell used is a design by Diao et al.
[2007] normalized by Smullen et al. [2011b], with an increased MTJ size of 36F 2 for a 32nm
process to ensure 10 year retention at 350K, typical for a performance microprocessor. The
design process for each of the regions of the multi-retention scratchpad consisted of multiple
iterations of the following steps:

(1) Calculate the required ∆r for the desired retention r from Eq. (1).
(2) Since ∆ ∝ V , calculate Ar, the area of the MTJ that features the desired retention, as

shown in Eq. (3).

Ar =
A10yr ×∆r

∆10yr
(3)

(3) Resize the baseline MTJ to a size that guarantees the desired retention r. Analyze the
performance/energy characteristics when the write pulse length τ varies. Select the τ
that minimizes the energy-delay product.

The resulting multi-retention scratchpad design is characterized in Figure 2. The solid
black line represents a 4 MB cache memory following the ITRS roadmap [ITRS 2012] as
characterized by CACTI 6.5 [Muralimanohar et al. 2009]. As can be seen in the figure, the
resulting sizes for the MTJ cells of the 10 s, 100 ms and 1 ms regions are 21F 2, 17F 2 and
13F 2, respectively. These have been scaled up to provide higher retentions than the nominal

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

read
latency

write
latency

density

leakage

read
energy

write
energy

10 yr (6 MB) 10 s (6 MB) 100 ms (4 MB) 1 ms (1 MB)
36 F² 21 F² 17 F² 13 F²

Fig. 2. Characterization of the designed multi-retention space. The dashed border marks optimal behavior.
The solid black line represents a 4 MB ITRS cache. The combined scratchpad regions are iso-area with the
cache.

read
latency

write
latency

density

leakage

read
energy

write
energy

10 yr (6 MB)

10 s (6 MB)

100 ms (4 MB)

1 ms (1 MB)

4 MB ITRS
cache

Fig. 3. Integrated view of Figure 2.

ones, approximately 16 s, 180 ms, and 2 ms at 350K. This helps account for process and
temperature variations.

After each iteration of the design process, the sizes of the different retention spaces are
retuned to make their combination iso-area with the 4 MB ITRS cache. The resulting sizes
are 6 MB for the 10 yr and 10 s retention regions, 4 MB for the 100 ms region and 1 MB for
the 1 ms one. Although it might seem paradoxical due to their better energy and latency
characteristics, low retention regions are made smaller than large retention ones for various
reasons. First, large retention regions are more versatile, and can be used to accommodate
short-lived data if necessary. As such, higher ratios of low retention regions to high retention
regions do not improve locality. Second, larger memories are less efficient. If we increase the
size of a given region, the latency due to access logic increases, as well as the wire delay
as it will need to be placed further away from the core. In order to maintain performance,
these latency increases need to be offset by reducing τ , which exponentially increases write
energy according to Eq. (2). If we strive to keep energy constant, then τ needs to be
increased, which directly affects write performance. For example, consider the designed 1
ms retention region. Doubling its size to 2 MB while keeping performance constant implies a
write and read energy overhead of 12% and 37%, respectively. If the design tries to improve
write energy, then it will incur 167% slower writes, while still suffering from 32% more
energetically costly reads. In both cases, the static energy term is increased by 16%. If
the region were to be made 4 MB in size, in order to retain performance the writes would
be 67% more energetically costly, against a 101% increase for reads and 264% for leakage
energy. Considering these, it is desirable to build small, low retention regions that can be
efficiently exploited by short-lived data.

Instead of enlarging low retention regions, we could consider lowering the retention of
larger ones. Filling with data from main memory even a fast 1 ms retention, 4 MB region
would take approximately 1 ms, that is, 100% of its effective retention time. Adding an
advanced refresh scheme to improve usability would increase the overall energy by an ad-
ditional 5% [Sun et al. 2011]. Increasing the retention time to 100 ms would increase the
dynamic energy by 8% on average. Given that the static energy of L2 and lower levels is

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

main memory space scratchpad space
address space

Main memory
(off-chip)

Scratchpad
(on-chip)

L1 Cache
(on-chip)

to core

Fig. 4. System architecture and address space partitioning.

the main energy component, the non-refreshed design has potential energy advantages to
be exploited.

The final design occupies 99.6% of the area of the 4 MB cache, while providing 17 MB
of memory space. As such, the scratchpad is 4.25x denser (in bytes per mm2) than the
conventional hardware-managed cache. Approximately 10% of this density increase is due
to the lack of a tag array in scratchpads, while the remaining 90% is the result of the
technological changes in the memory cells. Note that, contrary to what could be expected,
the 100 ms and 1 ms regions are less dense than the 10 s one, since smaller MTJ sizes would
appear to constitute smaller memory cells. However, there is a second relevant factor on
STT-RAM cell size, related to its write energy. As τ is made lower to increase performance,
Ic(τ) grows exponentially. In order to drive larger write currents, the transistor needs to be
made larger, thus decreasing the density of the memory. As can be seen in Figure 3, which
stacks the graphics of Figure 2 for easier comparison, lower retention regions are designed
for increasing performance, which negatively affects density.

4. DATA ALLOCATION

Our target data memory architecture consists of three components: a cache memory, a
scratchpad memory, and a main memory. The cache and the SPM are located on-chip, and
the main memory can be assumed to be off-chip DRAM (with a higher access latency). As
shown in Figure 4, the address space is divided between off-chip memory and on-chip SPM. It
is assumed that there is no direct path to transfer data from main memory to the scratchpad.
The CPU will be responsible for transferring data between on-chip and off-chip memory
whenever necessary. The SPM is assumed to be shared by all the cores in a processor die,
running a single application. The proposed data allocation algorithm can be combined with
techniques for the dynamic management of shared SPMs in multiprogrammed environments
(e.g. [Bathen et al. 2011]). Note that several commercial processors employ a similar data
hierarchy model [ARM 2010; Flachs et al. 2005; Lindholm et al. 2008]. Variations include
allowing DMA transfers between SPM and main memory, including L2 caches, and having
private SPMs for each core.

A fast multi-retention scratchpad such as the one proposed in this work leverages data
reuse to improve performance. Since some spaces of the SPM are short-lived, the allocation
algorithm must necessarily be dynamic. Although a compiler could analyze each location
in a program to obtain an optimal solution, the number of possible dynamic scratchpad
allocations is exponential [Udayakumaran et al. 2006], and the general problem of optimal
data allocation is known to be NP-complete [Avissar et al. 2002]. Since most data reuse takes
place inside loop nests, we propose a dynamic algorithm that only changes the allocation
layout at loop headers.

The proposed algorithm first analyzes each loop nest in the application individually and
selects those data that, if allocated to the scratchpad, would improve execution time, accord-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

ing to a cost model, as given for perfect loop nests in Section 4.1. This model is generalized in
Section 4.2. Afterwards, optimal allocation points are tuned to take into account inter-nest
reuse as shown in Section 4.3. Finally, a greedy algorithm uses the calculated cost model to
allocate the scratchpad taking into account capacity restrictions, as described in Section 4.4.
A discussion about restrictions and possible improvements follows in Section 4.5.

4.1. Allocation for perfect loop nests

Let us consider a loop nest with m perfectly nested loops and a single access to an n-
dimensional vector V nested at level m:

DO i1 = il1, iu1, s1
DO i2 = il2, iu2, s2
.

.

.

DO im = ilm, ium, sm

...V [f1(Ω)][f2(Ω)] . . . [fn(Ω)] . . .

where ilj , i
u
j , sj , 1 ≤ j ≤ m, denote the lower and upper bounds, and the step of loop i,

respectively; Ω = {i1, i2, . . . , im} is the set of all loop indices; and fd(Ω), 1 ≤ d ≤ n, is the set
of mapping functions that convert a given point in the iteration space of the nest to a point
in the data space of V . To simplify notation, let us refer to the access V [f1(Ω)] . . . [fn(Ω)]
as A, and to any loop by its index variable ij , 1 ≤ j ≤ m. Let φ(fd, ωj), 1 ≤ d ≤ n, 1 ≤
j ≤ m, be a boolean function that returns 0 when none of the loop indices in the set
ωj = {ij , . . . , im} ⊆ Ω are used by function fd, and 1 otherwise. Conceptually, φ(fd, wj)
checks whether fd is an invariant in the scope of loop ij . Let |Vd|, 1 ≤ d ≤ n, be the size of
vector V in dimension d. Let us define νij (A), a function that counts the number of memory
accesses emitted by A in loop ij , as:

νij (A) =
∏m

k=j

iuk − ilk + 1

sk
(4)

The size of the smallest polytope that is guaranteed to contain the data accessed by A
under loop ij , denoted by Dij (A), can be calculated as:

|Dij (A)| =
∏n

d=1
φ(fd, ωj) · |Vd| (5)

Note that this size can be further optimized in the case of affine accesses, as will be discussed
in Section 4.5. The reuse per element incurred by access A in loop ij , Rij (A), can be
calculated as:

Rij (A) =
νij (A)

|Dij (A)|
(6)

This calculation ofRij (A) can be generalized to consider a number a > 1 of identical accesses
A per iteration of the innermost loop, by multiplying Eq. (6) by a. Our proposed allocation
method calculates the reuse for each access in the nest for each loop i1, . . . , im. Afterwards,
it tentatively selects an allocation point for each access A as the point immediately before
the loop ij where reuse is maximized. The tentative scratchpad region for allocation is
selected by estimating the worst-case execution time of loop ij , WCET (ij), and choosing
the region featuring the smallest retention r such that r > WCET (ij).

Consider the matrix multiplication code shown in Figure 5 for illustrative purposes, where
each loop header has been annotated with the reuse value of the accesses in the internal
statement. The optimal allocation site for array Y is just before loop i, where each element
brought to SPM will be read N times. There are two optimal allocation sites for X, and

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

// Ri(Z[∗][∗]) = 2N3/N2 = 2N

// Ri(X[∗][∗]) = N3/N2 = N

// Ri(Y[∗][∗]) = N3/N2 = N

for(i = 0; i < N; i++)

// Rj(Z[i][∗]) = 2N2/N = 2N

// Rj(X[i][∗]) = N2/N = N

// Rj(Y [∗][∗]) = N2/N2 = 1

for(j = 0; j < N; j++)

// Rk(Z[i][j]) = 2N/1 = 2N

// Rk(X[i][∗]) = N/N = 1

// Rk(Y [∗][j]) = N/N = 1

for(k = 0; k < N; k++)

Z[i][j] += X[i][k] * Y[k][j];

Fig. 5. Annotated matrix multiplication code.

three for Z. Considering energy consumption, an allocation in an internal loop is more likely
to allow the use of a lower retention space and provide power savings. An innermore loop
must also have a smaller memory footprint, since the calculated reuse value is the same and
ν is smaller. As such, the obvious choice would be to allocate the tile X[i][∗] to SPM before
loop j, and the scalar Z[i][j] before loop k. Each variable could be allocated to a different
SPM region depending on the WCET of the loops i, j, and k.

Depending on whether a variable is read-only, write-only, or read-write in the scope of
a loop il it is possible to omit the write from or back to main memory before or after the
loop, respectively. Note that there is a reuse threshold below which no gains are obtained
from transferring a data tile from main memory (MM) to SPM. This threshold can be
analytically calculated using Eq. (7), where C is the cost function to be optimized (e.g.
performance in cycles, energy-per-access, . . .); and Θ is a constant with value 1 if A is a
read- or write-only access, and 2 in case of a read-write access.

Rij (A) >
Θ · C(MM)

C(MM)− C(SPM)
(7)

4.2. Generalization

Let us consider the case for two different accesses to the same array, V [f1(Ω)] . . . [fn(Ω)] and
V [f ′1(Ω)] . . . [f ′n(Ω)], abbreviated to A and A′. If the data spaces accessed by A and A′ are
copied to the scratchpad independently before loops ij and ij′ consistency issues arise when
there are potential overlaps and either of them is a write access. Even if both were read
accesses data would be replicated in the scratchpad. In order to avoid these risks a single
data tile containing the data spaces of both A and A′ must be brought into the scratchpad.
Without loss of generality, let ij be outer than ij′ . The number of accesses to the unified
tile is νij (A) + νij (A′), and its size is upper bounded by |Dij (A)| · |Dij (A′)|. The actual size
can be calculated as

|Dij (A ∪A′)| =
∏n

d=1
(φ(fd, ωj) ∨ φ(f ′d, ωj)) · |Vd| (8)

where ∨ is the logical disjunction with its usual definition over the boolean set {0, 1}.
Depending on the access functions, overlaps may be analytically discarded. Note that, if A
and A′ are both read-only accesses, then it is possible to keep two separate allocations even
in the case of overlaps. This will be beneficial when the size of the merged tile is bigger than
the sum of the original ones.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Considering non-perfectly nested loops, access A may appear any number of times, at any
nesting level. Its reuse in a loop ij can be calculated by iteratively replacing the innermost
loop im by a placeholder statement that is computed as performing νim(A) accesses to A
until ij is the innermost loop, then calculating Rij (A) as before. The case of multiple inner-
most loops is not problematic, as their respective reuses can be calculated independently.
Note that a canonical loop form has been used. Canonicalization passes readily available in
compiler frameworks can be used to implement the proposal.

4.3. Inter-nest reuse

Consider a simplified version of the control-flow graph where each node corresponds to a
loop nest and edges indicate control flow. Each node is annotated with the allocation points
in the corresponding nest for each variable in the code, as calculated in previous sections.
We call this graph the allocation graph of the application. Consider two neighboring nodes
representing two nests i1 and i′1, where i1 dominates i′1 in the control-flow graph1. Let
us assume that two different allocations for overlapping tiles of variable V are performed
just before the outermost loop in each nest. In the general case of read-write accesses, a
copy from and back to main memory of the appropriate tile in V will be performed before
and after, respectively, both i1 and i′1. Merging both allocations may be desirable, since
the copies to and from main memory that would be placed in between i1 and i′1 would be
omitted, improving locality. However, the merge may be harmful for power consumption,
depending on WCET (i1), WCET (i′1), WCET (i1 ∪ i′1), and the energy characteristics of
the different scratchpad regions. A mixed model which takes into account both performance
and energy could be used to guide this optimization. In our approach we always merge
allocations if the calculated reuse for the data allocated to SPM is higher, without taking
into account the characteristics of the selected SPM regions. The rationale is that two
different scratchpad regions have access latencies and energies of the same order, while the
energy and performance cost of accessing off-chip memory is assumed to be an order of
magnitude higher.

This operation creates a new allocation to replace the old ones. The new allocation point
is located before the dominant node, i1. The allocation scope ends after the dominated
node, i′1. The size of the allocated tile can be calculated using Eq. (8), modified to use
the appropriate Ω for each loop. As with intra-nest merges, the new number of accesses to
calculate reuse is νi1(A) + νi′1(A′).

This merge process can be performed iteratively over all the nodes in the graph. When the
process ends, a variable V may have a single associated allocation, with all the application
in scope. The merges tentatively performed in this step may be undone when capacity
restrictions are considered, as will be explained in the next section.

4.4. Capacity restrictions

At this point, optimal locations for copying data tiles to SPM have been selected for all
array accesses in the code. These locations have been chosen based on reuse alone, calculated
according to Eq. (6). Accesses with low reuse, where the benefit of copying the accessed data
to the scratchpad does not offset the cost, have been discarded as per Eq. (7). However, the
maximum capacity of each of the different scratchpad regions has not been considered.

The reuse per element, Rij (A), has been used in the previous sections as an analytical
metric to compare different allocation points for a given access. It is employed at this point
as a heuristical figure of merit to prioritize some allocations over others. We propose a
greedy algorithm that orders the tentative allocations according to their calculated reuse,
and selects the data to be allocated to the scratchpad for each loop as follows:

1In a control-flow graph, a block D dominates a block N if every path from the entry point that reaches N
has to go through D.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

(1) For each loop, select the data space Dij (A) with the highest reuse that has not yet been
considered for allocation. In case of a tie, select the one with the highest number of
accesses as per Eq. (4).

(2) If Dij (A) fits the optimal scratchpad region Ro for the required retention time
WCET (ij): allocate it to the beginning of the free memory in that region, and go
to step 1.

(3) Otherwise, if there is enough free space in a non-optimal region with higher retention,
Rh: fill Ro with the largest sub-tile of Dij (A) that fits, allocate the remaining data to
Rh, and go to 1.

(4) Otherwise, if no such Rh exists, discard allocation of Dij (A). The data accessed by A
will be allocated when and if a Dij′ (A) is found to be the data space with the highest
reuse that has not yet been considered for allocation. Note that ij′ will necessarily be
innermore than ij , as outer allocations always reference tiles of equal or larger size
and their WCET will be longer. Also note that a single unsuccessful allocation may be
replaced by several smaller ones, for instance when data is to be allocated in multiple
deeper, non-perfectly nested loops; or when the failed allocation attempt had been
originally created to exploit inter-nest reuse as described in Section 4.3.

A pseudocode for the entire allocation process is summarized in Algorithm 1. The pseu-
docode denotes the allocation of the polytope Dij (A) before loop ij for the scope of nest N
as Aij ,N (A). As an example, consider again the code in Figure 5. Let us assume a memory
system with a multi-retention SPM identical to the one designed in Section 3, N = 1024,
and that X, Y , and Z are variables of type double. The allocation algorithm first selects
Dk(Z[i][j]) as the data space with the highest reuse of 2048 accesses per element. The size
of the accessed data tile is of just 1 double, and the WCET of the loop is well below 1 ms.
Transfers from memory to the 1 ms retention region and vice versa are set up before and af-
ter the innermost loop, respectively. Afterwards, the allocation algorithm finds that X[i][k]
and Y [k][j] have the same reuse of 1024 accesses per element. Since Di(Y [k][j]) is accessed
230 times, versus 220 accesses for Dj(X[i][k]), the algorithm selects the former. This data
is accessed during the entire loop nest, and the estimated WCET is slightly under 10 s.
Consequently, it tries to allocate the entire data space to the 10 s region. However, its size
is 8 MB, while the size of this region is of only 6 MB. Therefore, it splits the allocation
between the 10 s region (6 MB) and the 10 yr one (the remaining 2 MB). Afterwards, it
sets up a transfer from memory to the SPM before loop i. No writeback is necessary, as
the access is read-only. Finally, for Dj(X[i][k]), the WCET for loop j is determined to be
slightly under 10 ms. Consequently, the data space is allocated to the 100 ms region, and a
transfer from memory to SPM is inserted before loop j. Again, no writeback is necessary.
Assuming that the number of loop nests in the code is smaller than the number of different
array accesses #A, which is the most frequent case, the entire algorithm is executed in a
polynomial time bounded by O(#A3).

4.5. Discussion

The proposed algorithm uses known iteration bounds to estimate the benefits of allocating
a tile to SPM. In the case of unknown bounds the compiler can use different complexity
metrics, or assume either a very large or very small number of iterations thus favoring or
preventing allocations to SPM. The latter approach is used by prefetching algorithms, in
which the impact of unknown bounds has been shown to be minor [Mowry et al. 1992].

The case of an affine access A can be further optimized by calculating the optimal poly-
tope that contains the data in Dij (A), instead of allocating the cartesian product of entire
dimensions. This enables further optimizations, such as retention-based loop tiling, in which
a loop ij could be tiled attending to WCET (ij) to optimize energy consumption.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Input: the allocation graph with no annotations, G
// 1. Calculation of reuse and optimal allocation points

1 foreach variable V do
2 foreach node N in G do
3 foreach loop ij in N do
4 foreach access A to V in the scope of ij do
5 calculate Rij (A);
6 end
7 io ← ij/Rij (A) > Rik(A),∀ik ∈ N ;
8 annotate N with Aio,N (A), the optimal allocation for A;
9 end

10 end
// Consider intra-nest reuse

11 foreach allocation pair (Aij ,N (A),Aij′ ,N (A′)), j ≤ j′ do
12 if (A is write access) OR
13 (A′ is write access) OR
14 (|Dij (A)|+ |Dij′ (A

′)| ≥ |Dij (A ∪A′)|) then
15 merge both allocations into Aij ,N (A ∪A′);
16 end
17 end
18 end

// 2. Extraction of inter-nest reuse
19 foreach allocation pair (Ai1,N (A),Ai′1,N ′(A′)) /N ′ ∈ IDom(N) do
20 if Di1(A) ∩ Di′1(A′) 6= ∅ then
21 merge both allocations into Ai1∪i′1,N∪N ′(A ∪A′);

22 end
23 end

// 3. Take size restrictions into account
24 foreach node N in G do
25 select Dij (A)

/
Rij (A) is maximum ;

26 if (Dij (A) fits optimal region Ro) OR
27 (Dij (A) fits Ro ∪Rh) then
28 allocate Dij to appropriate address space;
29 else
30 remove allocation Aij (A)
31 end
32 end

Algorithm 1: Pseudocode for the allocation algorithm

The optimal scratchpad region for allocation could be speculatively selected in the case
of read-only accesses. Consider a tile Dij (A) to be allocated to a scratchpad region R
with retention time r > WCET (ij). If a region R′ exists, with r′ only marginally below
WCET (ij), it may be advantageous to allocate Dij (A) to R′. Data decay can be detected
during runtime and the remaining accesses performed through off-chip main memory.

The proposed model does not take into account the different characteristics of each
scratchpad region, nor the different characteristics for read and write accesses, when cal-
culating the optimal allocation places. These differences are found to be almost irrelevant
compared to the much bigger ones with off-chip accesses. As such, the potential benefits of
more complex models are severely limited, as any change in the allocation that diminishes

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

read
latency

write
latency

density

leakage

read
energy

write
energy

10 yr (6 MB)

10 s (6 MB)

100 ms (4 MB)

1 ms (1 MB)
16 MB Non-volatile

STT-RAM SPM

Fig. 6. Characterization of the multi-retention space against the baseline. The dashed border marks optimal
behavior.

reuse is going to increase the number of off-chip accesses. Also, the model does not consider
the access patterns of each data tile and the cache line size. Cache-friendly accesses could be
penalized depending on their stride and reuse distance. Furthermore, constant Θ in Eq. (7)
would also be dependent on the line size and access stride.

For simplicity, the case of scalar variables has not been considered. However, they can be
incorporated into the proposal without significant changes. Also this proposal does not con-
sider interprocedural reuse, although the fundamental ideas could be applied, particularly
the ones related to exploiting inter-nest reuse. Conditional statements have not been con-
sidered. In this case, the optimal allocation point for each data space cannot be calculated
analytically. Reuse weighted by the chance of executing each conditional branch could be
used as a heuristic metric.

5. EXPERIMENTAL EVALUATION

Experiments were performed using the gem5 simulator [Binkert et al. 2011], a tool used for
architectural modeling. The framework was used in “syscall emulation” mode, which sim-
ulates only the CPU and memory system and emulates system-level services. The memory
system was modified to include a configurable multi-retention scratchpad, and instructions
to manage the different address spaces were added to the ISA. The Detailed processor
model was used, simulating a pipelined, out-of-order CPU, at a 2 Ghz frequency. L1 access
latency is 1 cycle and ITRS L2 SRAM latency is 3 cycles. Latencies for simulated SPMs and
STT-RAM caches vary between 1-3 cycles for reads and 3-9 cycles for writes, depending on
the memory size and selected volatility. Note that these numbers are purely the times for
accessing the data array for each memory (including tag array accesses on caches). On top
of these latencies the simulator adds any delay caused by cache contention and coherence,
depending on the execution context for each access. All simulated memories are assumed to
have a single read/write port. A MESI coherence protocol is used for configurations with
shared L2. Wire latency has not been taken into account for any of the simulated memories,
as it is completely dependent on the floorplan of each specific architecture.

Our test applications are computational kernels extracted from the SPEC CPU2006
benchmarks [Henning 2006] (bwaves, cactusADM, leslie3d, and hmmer), the Mantevo
benchmarks [Heroux et al. 2009] (HPCCG and miniMD), the Mediabench suite [Lee et al.
1997] (gsm and adpcm), and the PARSEC benchmarks [Bienia 2011] (canneal and
streamcluster). Each kernel was configured to simulate at least 1010 cycles. All the execu-
tion setups used in this section include a 64 KB SRAM L1 cache. The differences between
setups are: 1) whether they have an L2 cache, and its characteristics; and 2) whether they
have an SPM space, and its characteristics.

5.1. Characterization of the multi-retention scratchpad

This section is devoted to the analysis of the effect of dividing the scratchpad into regions
with different retentions and characteristics. To this end, the multi-retention scratchpad
designed in Section 3 is compared with an STT-RAM scratchpad with a single, non-volatile

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

0

0 .2

0 .4

0 .6

0 .8

1.0
10 yr 10 s 100 ms 1 ms

cactusADM
leslie3d HPCCG

miniMDhmmer
gsm

adpcm
bwaves canneal

streamcl.
N

o
rm

.
b
a
se

lin
e
 a

cc
e
ss

e
s

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

re
a
d

w
ri

te

Fig. 7. Distribution of accesses to each region in the scratchpad.

region. This baseline system features a 16 MB SPM with 10 yr retention time. Data are
allocated to this scratchpad using the strategy proposed by Udayakumaran et al. [2006].
This method modifies the scratchpad allocation at program points where locality behavior
changes, using profiling and an analytical cost model to guide the allocation process. Figure 6
graphically compares the characteristics of both memories using the configurations further
detailed in Table I (see entries “16 MB NVM SPM” and “Multi-ret. SPM”).

Figure 7 analyzes how SPM accesses are distributed among the different retention regions.
Accesses are categorized into reads and writes, and normalized to the number of baseline
accesses. The SPEC kernels have large nested loops with heterogeneous working sets that
take advantage of all the retention spaces. In contrast, the Mantevo and Mediabench codes
are smaller in size, with fast loops that do not employ the higher retention regions. The
PARSEC benchmarks have the smallest loops, and the allocation scheme has trouble ex-
ploiting locality in these object-oriented codes. Note that the addition of the normalized
number of accesses is not always 1.0. This is due to the fragmentation in the scratchpad.
For cactusADM some variable allocations cannot be performed at the optimal reuse point,
as there is not enough combined free space in regions with the appropriate retention (see
steps 2 and 3 in Section 4.4). The compiler is forced to allocate data in an innermore loop
which reduces the size of the accessed data tile and the necessary retention. However, it
also reduces reuse. Since the computational kernel will require exactly the same number
of accesses and reuse is reduced, according to Eq. (6) the size of the data brought to the
scratchpad must increase, which implies a potentially larger number of loads and/or write-
backs to main memory, depending on whether the affected variable is read-only, write-only,
or read-write.

Regarding execution times, the impact of the faster accesses in the multi-retention SPM
is limited. The number of cycles required for the simulation of the kernels is within the
1% range in all cases. Off-chip memory accesses, which are an order of magnitude slower,
dominate the execution times. This fact makes the differences in static energy almost con-
stant for all applications, well below 1%. For this reason, static energy is not taken into
consideration for the remainder of this section.

Figure 8 shows the dynamic power consumption for each scratchpad region. The impact
of fragmentation is clearly visible in cactusADM, where an energy overhead due to main
memory accesses appears. Since it is not possible to allocate all data tiles at their optimal
reuse point as in the baseline, the number of accesses to main memory increases. The
energy consumed by off-chip accesses has to be taken into account. Even in the presence
of fragmentation issues, the multi-retention approach still offers significant gains. Energy
savings range between 22% for cactusADM and 80% for streamcluster. Total savings,
calculated using a workload composed of all the benchmark executions, are of 63%.

The effect of fragmentation was studied using different baseline sizes of 4 MB, 8 MB and
32 MB and comparing their results with multi-retention SPMs built using the same design

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

0

1.0

N
o
rm

.
d
y
n
a
m

ic
 e

n
e
rg

y

0.8

0.6

0.4

0.2

baseline 10 yr 10 s
100 ms 1 ms MM overhead

cactusADM
leslie3d HPCCG

miniMDhmmer
gsm

adpcm
bwaves canneal

streamcl.

Fig. 8. Dynamic energy consumption per scratchpad region.

0.7

0.8

0.9

1.0

1.1

N
o
rm

.
e
xe

c.
 c

y
cl

e
s

1.2

SRAM cache STT-RAM cache Cache hybrid SPM hybrid
Multiret. SPM No 10s SPM No 100ms SPM No 1ms SPM

bwaves cactusADM leslie3d hmmer HPCCG minimd gsm adpcm canneal streamcl.

Fig. 9. Normalized execution cycles.

principles previously exposed. In all cases some applications present fragmentation issues,
which are translated into an overhead in the energy spent for off-chip memory access. This
overhead is not large enough as to offset the benefits of relaxing the non-volatility, and the
trends exposed in this section remain unchanged.

5.2. Comparison with other configurations

This section compares the proposed multi-retention SPM with several different on-chip
memory configurations. Our baseline is a 4 MB ITRS cache featuring SRAM cells. All
other configurations are approximately iso-area with this baseline. The second configuration
switches the SRAM L2 cache for an STT-RAM L2 cache. Due to its higher density, this
cache accommodates 12 MB of memory. Two hybrid configurations are tested, including
both an STT-RAM L2 cache and an SPM. The difference between the two are the sizes of
each memory: one has an 8 MB cache and a 4 MB multi-retention SPM, while the other
features a 4 MB cache and an 8 MB multi-retention SPM. The third set of memories are
included to test the effects of reducing the number of regions in the multi-retention design
by removing the 10 s, 100 ms, and 1 ms retention spaces. The non-volatile region is not
removed since it would require a mechanism to deal with data decay. Table I details the
configurations used.

Figure 9 shows the normalized execution cycles for each application and the different
on-chip memory configurations. The use of scratchpad memories improves execution cycles
for those benchmarks with a working set bigger than the on-chip memory. In these situa-
tions, the analysis of the code achieves better performance than the LRU behavior of the
caches. This happens for the SPEC benchmarks, as well as for the Mantevo benchmarks.
For Mediabench and PARSEC the data allocated to SPM fits the on-chip memory of the
baseline configuration. In this situation, the explicit copy of data from main memory to
SPM implies an irrecoverable overhead. Furthermore, when the kernel is very small and
reuses data, the intraprocedural allocation algorithm flushes and reallocates data each time
the kernel is called, while in the cache configurations data is still available on-chip to be

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Table I. Summary of the configurations used.

Name Description Latency (cycles) Energy Area (mm2)
Read Write Read (pJ) Write (pJ) Leakage (mW)

SRAM cache · 4 MB ITRS L2 cache 3 712.51 1625.1 15.97
16 MB NVM SPM · 10 yr: 16 MB 3 9 665.62 749.43 532.04 16.57
STT-RAM cache · 12 MB STT-RAM L2 cache 3 8 585.67 652.27 575.56 16.09

Cache hybrid

· 8 MB STT-RAM L2 cache 3 8 479.89 521.53 368.54 9.65
· 4.25 MB multi-retention SPM:

· 1 ms: 256 KB 1 3 51.95 114.36 14.95 0.30
· 100 ms: 1 MB 2 3 134.94 219.15 54.90 1.02
· 10 s: 1.5 MB 2 3 195.98 295.83 49.51 1.83
· 10 yr: 1.5 MB 2 6 223.38 323.87 79.04 2.26

566.94 15.06

SPM hybrid

4 MB STT-RAM L2 cache 2 6 371.25 464.51 188.96 5.58
8.5 MB multi-retention SPM:

· 1 ms: 512 KB 1 3 77.15 131.63 18.90 0.38
· 100 ms: 2 MB 2 3 212.85 312.99 85.36 1.95
· 10 s: 3 MB 2 3 318.96 484.47 127.24 3.39
· 10 yr: 3 MB 2 6 320.07 424.63 165.20 4.65

585.66 15.95

Multi-ret. SPM

17 MB multi-retention SPM:
· 1 ms: 1 MB 2 3 121.98 176.24 56.14 0.94
· 100 ms: 4 MB 2 4 254.41 258.02 132.81 3.84
· 10 s: 6 MB 2 7 348.36 368.25 168.39 5.28
· 10 yr: 6 MB 2 8 410.29 470.48 184.60 5.84

541.94 15.90

No 10 s SPM

19 MB multi-retention SPM:
· 1 ms: 2 MB 2 3 172.18 191.08 57.84 1.25
· 100 ms: 7 MB 2 6 347.86 356.07 175.18 5.25
· 10 yr: 10 MB 3 9 525.25 597.30 309.89 9.77

542.91 16.27

No 100 ms SPM

17 MB multi-retention SPM:
· 1 ms: 2 MB 2 3 172.18 191.08 57.84 1.25
· 10 s: 8 MB 2 7 392.19 393.51 184.94 6.10
· 10 yr: 7 MB 3 8 465.34 557.84 257.33 8.77

500.11 16.12

No 1 ms SPM

19 MB multi-retention SPM:
· 100 ms: 7 MB 2 6 347.86 356.07 175.18 5.25
· 10 s: 6 MB 2 7 348.36 368.25 168.39 5.28
· 10 yr: 6 MB 2 8 410.29 470.48 184.60 5.84

528.17 16.37

readily used. The difference between the pure SPM configurations is negligible, only 0.1%
on average.

Static consumption, shown in Figure 10, is directly derived from the leakage energy of
each configuration and the execution cycles. It is possible to turn off the SPM banks that
are not used, as they are statically determined by the compiler. This effect is represented
in the figure by the faded out bars of the relevant configurations. A similar, more complex
technique can be applied to cache memories [Flautner et al. 2002]. STT-RAM configura-
tions have lower static consumption, independently of the run times, due to their inherent
characteristics. Also, pure SPMs tend to have lower leakage energy than configurations that
include caches as no tag arrays are present. Configurations without a given retention region
usually consume more than the full multi-retention one when unused banks are turned off.
This largely depends on the powered on-chip area, since the difference in execution times
between these configurations is negligible. The allocation algorithm could be improved to
take advantage of this by accounting for static power savings if allocations to low retention
regions are moved to higher retention ones with enough free space.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

0

0.2

0.4

0.6

0.8

1.0
N

o
rm

.
st

a
ti

c
e
n
e
rg

y

SRAM cache STT-RAM cache Cache hybrid SPM hybrid
Multiret. SPM No 10s SPM No 100ms SPM No 1ms SPM

bwaves cactusADM leslie3d hmmer HPCCG minimd gsm adpcm canneal streamcl.

Fig. 10. Normalized static energy consumption of the memory hierarchy. Faded out bars represent savings
if unused scratchpad regions are turned off.

SRAM cache STT-RAM cache Cache hybrid SPM hybrid
Multiret. SPM No 10s SPM No 100ms SPM No 1ms SPM

bwaves cactusADM leslie3d hmmer HPCCG minimd gsm adpcm canneal streamcl.
0

1.0
2.0
3.0
4.0
5.0

7.0

N
o
rm

.
d

y
n
a
m

ic
 e

n
e
rg

y

6.0

Fig. 11. Normalized dynamic energy consumption of the memory hierarchy.

0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
to

ta
l
e
n

e
rg

y

bwaves cactusADM leslie3d hmmer HPCCG minimd gsm adpcm canneal streamcl.

SRAM cache STT-RAM cache Cache hybrid SPM hybrid
Multiret. SPM No 10s SPM No 100ms SPM No 1ms SPM

Fig. 12. Normalized total energy consumption of the memory hierarchy. Faded out bars represent savings
if unused scratchpad regions are turned off.

Figure 11 details dynamic consumption. Configurations including caches are less power
hungry in this case. The main reason for this effect is that, in order to improve locality,
many data that would be accessed through L1 is allocated to the SPM. While the STT-RAM
SPM has better access energy characteristics than the SRAM L2, accessing some regions
is an order of magnitude more costly than accessing L1. This directly translates into a
higher dynamic consumption. The effect is much more noticeable for the configuration that
does not include a 1 ms retention scratchpad, as it is the only region with access energy
comparable to an L1 cache. This overhead could be alleviated by taking into account the
access patterns of each data tile during allocation, as discussed in Section 4.5.

Figure 12 summarizes the total power consumption of the memory hierarchy. In our
experimental setup, the static power consumption clearly dominates, as predicted by ITRS
below 65 nm technology, and the leakage advantage of the scratchpad memories is translated
to the total consumption. However, note that these tests have been conducted using a
single execution thread, and the actual access frequency to the on-chip memories is far from
the design maximum. As the number of cores increases, the static power is expected to
increase slightly due to the additional L1 caches, while the dynamic power would increase
significantly, as will be seen in Section 5.5. Total energy savings for the full multi-retention
SPM configuration with respect to the SRAM cache range from 51% for streamcluster to

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

63% for HPCCG. Savings calculated using all benchmark executions as a single workload are
of 53.4%.

5.3. Optimality analysis

The optimality of the results can be studied from two different points of view: optimality
of the allocation algorithm and optimality of the designed architecture.

The footprint of some applications is larger than the space available in the better fitting
retention region. The allocation algorithm deals with these situations by either allocating
part of the data in a higher retention region, if available, or selecting a different allocation
point for the data (i.e. an innermore loop), therefore sacrificing reuse. A way to measure
the optimality of the allocation algorithm is to compare the results to those obtained by an
ideal scratchpad architecture with infinite allocation space per region which preserves the
energy and latency characteristics of the multi-retention SPM.

However, some applications face the exact opposite situation: the available scratchpad
space is larger than their memory footprint. These applications are paying a price in terms
of both static and dynamic energy for having large memories beyond their requirements.
Ideally, the designer could build an ad-hoc system to exactly fit the application requirements.
These memories would present energy and latency differences with respect to the multi-
retention SPM, depending on the ad-hoc sizes of each retention region.

Figures 13 and 14 show the optimal static and dynamic energy consumptions, respec-
tively, obtained according to both optimality definitions, and normalized to the original
energy consumption using the multi-retention scratchpad designed in Section 3. The origi-
nal static energy is obtained by turning off the scratchpad regions that are unused during
the entire execution, as discussed in Section 5.2. As can be seen, assuming infinite scratch-
pad regions only makes a difference in two of the kernels, cactusADM and leslie3d, as their
total footprints are larger than the available space in the desired retention regions. With
infinite-sized memories it is possible to perfectly exploit reuse, thus improving runtimes and
therefore static energy. Furthermore, as less off-chip accesses are issued, dynamic energy im-
proves. When considered together, the configuration employing infinite scratchpad regions
consumes on average 99% of the baseline energy when using all benchmark executions as a
single workload, with a minimum consumption of 83% of the total energy for cactusADM.

Executing applications with ad-hoc SPMs has several advantages. Smaller memories oc-
cupy less area and consume less energy, both static and dynamic. Since many of the appli-
cations did not fill the space available in the multi-retention SPM significant improvements
can be achieved. Additionally, smaller memories can be made faster, presenting further im-
provements in static energy. However, for applications where some region needs to be made
larger than the originally available, some energy components will increase. This is the case
for the dynamic energy of leslie3d: the 10 s retention region needs to be made larger,
consequently increasing its dynamic energy. This increase is not offset by the decrease in
the dynamic energy of other regions that were only partially used. As a result, the total
dynamic energy term is slightly increased. However, this increase is more than offset by the
improvement in static energy, and ultimately leslie3d consumes approximately 88% of
the baseline energy. The configuration using ad-hoc scratchpad regions consumes on aver-
age 89% of the baseline energy when using all benchmark executions as a single workload,
with a minimum consumption of 81% of the baseline energy for canneal.

5.4. Dynamic behavior

Figure 15 shows the dynamic behavior of the leslie3d kernel using the cumulative access
distribution of memory accesses over time. This kernel is divided into six different allocation
scopes, each corresponding to a loop nest in the code (separated by vertical dotted lines
in the figure). During the first one, the application writes an array with no reuse, reading
a different array with reuse over the fastest changing dimension. The selected allocation

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

infinite sizead-hoc size

0

1.0

N
o
rm

.
st

a
ti

c
e
n
e
rg

y

0.8

0.6

0.4

0.2

cactusADM
leslie3d HPCCG

miniMDhmmer
gsm

adpcm
bwaves canneal

streamcl.

Fig. 13. Static energy of optimal configurations, normalized to static energy of the Multi-ret. SPM.

infinite sizead-hoc size

0

1.0

N
o
rm

.
d
y
n
a
m

ic
 e

n
e
rg

y

0.8

0.6

0.4

0.2

cactusADM
leslie3d HPCCG

miniMDhmmer
gsm

adpcm
bwaves canneal

streamcl.

Fig. 14. Dynamic energy of optimal configurations, normalized to dynamic energy of the Multi-ret. SPM.

10 yr 10 s 1 ms Main mem.

0

1.0

C
u
m

u
la

ti
v
e
 a

cc
e
ss

 d
is

tr
ib

.

0.8

0.6

0.4

0.2

1.00.2 0.80.60.4
Normalized execution cycles

Fig. 15. Cumulative access distribution for leslie3d.

brings the read-only data space to the 1 ms retention region. The scope is executed 48%
faster than using a hardware-managed SRAM cache. The second, third, and fourth scopes
are very similar loops that initialize small arrays. The scratchpad is not used during their
execution, as there is no reuse to exploit. The difference in execution times with respect
to the SRAM cache configuration is negligible. The fifth scope initializes two small arrays
reading from four different arrays. As in the first scope, small tiles of these arrays are selected
for allocation to the 1 ms region to exploit reuse over the fastest changing dimension. This
section is 9% slower than using caches, as the scratchpad version has no locality advantage
and includes explicit memory transfers. The last scope is the largest and the one that involves
the majority of the accesses and reuse in the kernel. Only the 100 ms region remains unused
in this scope, which is executed 25% faster in the SPM version.

This analysis shows that potential improvements from turning off scratchpad banks are
higher than suggested by Figures 10 and 12, where only regions that are not used during

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

0

0 .2

0 .4

0 .6

0 .8

1.0

1 2 4 8 16 32

leakage energy
dynamic energy

runtime baseline
runtime SPM

N
o
rm

a
liz

e
d
 a

x
is

Threads

S
P
M

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

S
P
M

S
P
M

S
P
M

S
P
M

S
P
M

Fig. 16. Evolution of power consumption and execution cycles of HPCCG increasing the execution threads.

0

0 .2

0 .4

0 .6

0 .8

1.0

N
o
rm

a
liz

e
d
 a

x
is

Threads
1 2 4 8 16 32

leakage energy
dynamic energy

runtime baseline
runtime SPM

S
P
M

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

B
a
se

lin
e

S
P
M

S
P
M

S
P
M

S
P
M

S
P
M

Fig. 17. Evolution of power consumption and execution cycles of miniMD increasing the execution threads.

the entire execution are turned off. Figure 15 shows that, for leslie3d, it would be possible
to turn off the 10 yr and 10 s regions of the scratchpad for 45% of the execution cycles,
and 12% for the 1 ms region. This would bring additional power savings of 5% against the
4 MB L2 cache, for a grand total improvement of 65%.

5.5. Analysis of parallel applications

The Mantevo codes, parallelized using OpenMP, are used to study the behavior of our
proposed multi-retention SPM with parallel workloads. Figures 16 and 17 show the energy
consumption and execution cycles of HPCCG and miniMD, respectively, as the number of
threads used for execution increases. Each thread is executed on its own core. Each core
has a private L1. The SPM is shared among all the cores. The baseline system uses a 4 MB
ITRS L2 cache, while the scratchpad system is the full multi-retention design.

As expected, the execution time decreases with the number of cores. So does the leakage
energy, as the caches and scratchpad memories have to be on for a smaller amount of time.
However, each additional core includes its L1 cache, with an associated static energy cost.
At some point, the diminishing speedup is not enough to achieve net gains, and the static
consumption is larger as new cores are added, even if execution time decreases slightly. This
effect is present in both the cache and the scratchpad configurations. As can be seen, the
static gains offered by the multi-retention STT-RAM SPM are retained in multithreaded
configurations.

As seen in Section 5.2, the SPM configurations have an overhead on dynamic energy
consumption due to the bypass of the L1 cache, with lower access energy. This is clearly
visible in miniMD, where the dynamic energy growth rate is approximately the same for
both the cache and the SPM configurations, but differences are much more significant for
32 cores. However, this bypass also avoids the false sharing which is present in HPCCG. As a

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

result, dynamic consumption increase is not as steep when using SPMs as is the case with
caches.

As for total power, the increase in the number of threads affects negatively the energy
advantages offered by the multi-retention scratchpad. This has two main causes: on the one
hand, static power consumption savings become smaller as the execution time decreases; on
the other, dynamic power consumption increases as a result of the growth in the number
of memory accesses due to cache coherency issues. Total energy savings for executions with
32 threads are of 48% for HPCCG, and of 42% for miniMD.

6. CONCLUDING REMARKS

This work has explored the implementation of scratchpad memories using volatile STT-
RAM. By relaxing the non-volatility of this technology, its latency and dynamic energy
characteristics are improved. Together with its very high density and near-zero leakage
energy, this makes it a serious alternative for implementing on-chip memories. Scratchpads
further capitalize on the latency and energy advantages, by removing the tag array present
in cache memories. The designed memories feature different retention regions, that can be
used to closely match the lifespan of allocated data and optimize performance and energy.
This type of technology could be used not necessarily as a built-in replacement for hardware-
managed caches, but also as a form of specialization of the on-chip memory hierarchy to
exploit the predicted increasing percentage of dark silicon.

The paper has presented the steps for designing an STT-RAM-based multi-retention
scratchpad and a customized compiler-based data allocation algorithm. The experimental
evaluation shows that the proposed system has significant benefits for embedded applica-
tions. It provides savings of 63% in dynamic power consumption compared to a non-volatile
STT-RAM-based scratchpad; and executes up to 28.5% faster, saving 53% of the energy
consumed by a system featuring an iso-area hardware-managed SRAM cache. Experimenta-
tion suggests that these savings can be further improved by more aggressive optimizations
to turn off unused scratchpad banks during idle periods. The use of scratchpad memories
can also improve the dynamic power consumption of multithreaded workloads by reducing
false sharing.

REFERENCES

ARM. 2010. Cortex-R5 Technical Reference Manual. Technical Report DDI-0460D. ARM Limited, Cam-
bridge, UK.

O. Avissar, R. Barua, and D. Stewart. 2002. An optimal memory allocation scheme for scratch-pad-based
embedded systems. ACM Trans. Embed. Comput. Syst. 1, 1 (2002), 6–26.

R. Banakar, S. Steinke, L. Bo-Sik, M. Balakrishnan, and P. Marwedel. 2002. Scratchpad memory: design
alternative for cache on-chip memory in embedded systems. In Proceedings of the 10th International
Symposium on Hardware/Software Codesign, CODES. Estes Park, CO, USA, 73–78.

L. A. D. Bathen and N. Dutt. 2012. HaVOC: a hybrid memory-aware virtualization layer for on-chip dis-
tributed scratchpad and non-volatile memories. In Proceedings of the 49th Annual Design Automation
Conference, DAC. San Francisco, CA, USA, 447–452.

L. A. D. Bathen, N. D. Dutt, D. Shin, and S.-S. Lim. 2011. SPMVisor: Dynamic ScratchPad Memory
Virtualization for Secure, Low Power, and High Performance Distributed On-Chip Memories. In Pro-
ceedings of the 9th International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS. Taipei, Taiwan, 79–88.

C. Bienia. 2011. Benchmarking modern multiprocessors. Ph.D. Dissertation. Department of Computer Sci-
ence, Princeton University, USA.

N. Binkert and others. 2011. The gem5 simulator. ACM Comput. Arch. News 39, 2 (2011), 1–7.

S. Borkar and A. A. Chien. 2011. The future of microprocessors. Commun. ACM 54, 5 (2011), 67–77.

J. Coburn and others. 2011. NV-Heaps: making persistent objects fast and safe with next-generation, non-
volatile memories. In Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS. Newport Beach, CA, USA, 105–118.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Z. Diao and others. 2007. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer
torque random access memory. J. Phys. Condens. Matter 19 (2007), 165209.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. 2011. Dark silicon and the end
of multicore scaling. In Proceedings of the 38th International Symposium on Computer Architecture,
ISCA. San Jose, CA, USA, 365–376.

B. Flachs and others. 2005. A streaming processing unit for a CELL processor. In Proceedings of the IEEE
International Solid-State Circuits Conference, ISSCC. San Francisco, CA, USA, 134–135.

K. Flautner, N. S. Kim, S. M. Martin, D. Blaauw, and T. N. Mudge. 2002. Drowsy caches: simple tech-
niques for reducing leakage power. In Proceedings of the 29th International Symposium on Computer
Architecture, ISCA. Anchorage, AK, USA, 148–157.

X. Guo, E. Ipek, and T. Soyata. 2010. Resistive computation: avoiding the power wall with low-leakage,
STT-MRAM based computing. In Proceedings of the 37th International Symposium on Computer
Architecture, ISCA. Saint-Malo, France, 371–382.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. 2011. Toward dark silicon servers. IEEE Micro
31, 4 (2011), 6–15.

J. L. Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM Comput. Arch. News 34, 4 (2006),
1–17.

M. A. Heroux and others. 2009. Improving performance via mini-applications. Technical Report SAND2009-
5574. Sandia National Laboratories, Albuquerque, NM, USA.

J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha. 2013. Data allocation optimization for hybrid
scratch pad memory with SRAM and nonvolatile memory. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 21, 6 (2013), 1094–1102.

J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, and E. H.-M. Sha. 2014. Management and optimization for
nonvolatile memory-based hybrid scratchpad memory on multicore embedded processors. ACM Trans.
Embed. Comput. Syst. 13 (2014). Issue 4.

ITRS. 2012. International Technology Roadmap for Semiconductors.
http://www.itrs.net/Links/2012ITRS/Home2012.htm. (2012).

A. Jog and others. 2012. Cache revive: architecting volatile STT-RAM caches for enhanced performance in
CMPs. In Proceedings of the 49th Annual Design Automation Conference, DAC. San Francisco, CA,
USA, 243–252.

M. Kandemir and others. 2001. Dynamic management of scratch-pad memory space. In Proceedings of the
38th Design Automation Conference, DAC. Las Vegas, NV, USA, 690–695.

E. Kultursay and others. 2012. Performance enhancement under power constraints using heterogeneous
CMOS-TFET multicores. In Proceedings of the 10th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS. Tampere, Finland, 245–254.

E. Kultursay, M. T. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an
energy-efficient main memory alternative. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems & Software, ISPASS. Austin, TX, USA, 256–267.

B. C. Lee and others. 2010. Phase-change technology and the future of main memory. IEEE Micro 30, 1
(2010), 131–141.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. 1997. MediaBench: a tool for evaluating and synthesizing
multimedia and communication systems. In Proceedings of the 30th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO. Research Triangle Park, NC, USA, 330–335.

J. Li, L. Shi, Q. Li, C. J. Xue, Y. Chen, and Y. Xu. 2013b. Cache coherence enabled adaptive refresh for
volatile STT-RAM. In Design, Automation and Test in Europe, DATE. Grenoble, France, 1247–1250.

Q. Li, J. Li, L. Shi, C. J. Xue, Y. Chen, and Y. He. 2013a. Compiler-assisted refresh minimization for
volatile STT-RAM cache. In 18th Asia and South Pacific Design Automation Conference, ASP-DAC.
Yokohama, Japan, 273–278.

Q. Li, Y. Zhao, J. Hu, C. J. Xue, E. Sha, and Y. He. 2012. MGC: Multiple graph-coloring for non-volatile
memory based hybrid scratchpad memory. In 16th Workshop on Interaction between Compilers and
Computer Architectures, INTERACT. New Orleans, LA, USA, 17–24.

X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. 2007. Process variation tolerant 3T1D-based cache architec-
tures. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO. Chicago, IL, USA, 15–26.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA Tesla: a unified graphics and
computing architecture. IEEE Micro 28, 2 (2008), 39–55.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

T. C. Mowry, M. S. Lam, and A. Gupta. 1992. Design and evaluation of a compiler algorithm for prefetch-
ing. In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS. Boston, MA, USA, 62–73.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. 2009. CACTI 6.0: A tool to model large caches.
Technical Report HPL-2009-85. HP Laboratories, Palo Alto, CA, USA.

P. R. Panda, N. D. Dutt, and A. Nicolau. 1997. Efficient utilization of scratch-pad memory in embedded
processor applications. In Proceedings of the European Design and Test Conference, ED&TC. Paris,
France, 7–11.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. 2009. Scalable high performance main memory system using
phase-change memory technology. In Proceedings of the 36th International Symposium on Computer
Architecture, ISCA. Austin, TX, USA, 24–33.

M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and S. Yalamanchili. 2010. An energy
efficient cache design using Spin Torque Transfer (STT) RAM. In Proceedings of the International
Symposium on Low Power Electronics and Design, ISLPED. Austin, TX, USA, 389–394.

N. D. Rizzo and others. 2002. Thermally activated magnetization reversal in submicron magnetic tunnel
junctions for magnetoresistive random access memory. Appl. Phys. Lett. 80, 13 (2002), 2335–2337.

A. Shaffer, B. Einfalt, and P. Raghavan. 2010. PFFTC: An improved fast Fourier transform for the IBM cell
broadband engine. In Proceedings of the International Conference on Computational Science, ICCS.
Amsterdam, The Netherlands, 1045–1054.

C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan. 2011a. Relaxing non-volatility for
fast and energy-efficient STT-RAM caches. In Proceedings of the 17th International Conference on
High-Performance Computer Architecture, HPCA. San Antonio, TX, USA, 50–61.

C. W. Smullen, A. Nigam, S. Gurumurthi, and M. R. Stan. 2011b. The STeTSiMS STT-RAM simulation
and modeling system. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD. San Jose, CA, USA, 318–325.

Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu. 2011. Multi retention level STT-
RAM cache designs with a dynamic refresh scheme. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO. Porto Alegre, Brazil, 329–338.

M. B. Taylor. 2012. Is dark silicon useful? Harnessing the four horsemen and the coming dark silicon
apocalypse. In Proceedings of the 49th Annual Design Automation Conference, DAC. San Francisco,
CA, USA, 1131–1136.

S. Udayakumaran, A. Dominguez, and R. Barua. 2006. Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. Embed. Comput. Syst. 5, 2 (2006), 472–511.

G. Venkatesh and others. 2010. Conservation cores: reducing the energy of mature computations. In Pro-
ceedings of the 15th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS. 205–218.

P. Wang, G. Sun, T. Wang, Y. Xie, and J. Cong. 2013. Designing scratchpad memory architecture with
emerging STT-RAM memory technologies. In Proceedings of the IEEE International Symposium on
Circuits and Systems, ISCAS. Beijing, China, 1244–1247.

A. Yanamandra, B. Cover, P. Raghavan, M. J. Irwin, and M. T. Kandemir. 2008. Evaluating the role
of scratchpad memories in chip multiprocessors for sparse matrix computations. In Proceedings of the
22nd IEEE International Symposium on Parallel and Distributed Processing, IPDPS. Miami, FL, USA,
1–10.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

