
i
i

“BIOINF-2016-0709_R1_v2” — 2016/8/3 — 12:51 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: 2 April 2015
Applications Note

Sequence analysis

MSAProbs-MPI: Parallel Multiple Sequence Aligner
for Distributed-Memory Systems
Jorge González-Domínguez1,∗, Yongchao Liu2, Juan Touriño1 and
Bertil Schmidt3

1Grupo de Arquitectura de Computadores, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
2School of Computational Science and Engineering, Georgia Institute of Technology, 266 Ferst Drive, 30332 Atlanta (GA), USA
3Institut für Informatik, Johannes Gutenberg Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden
Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for
large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version
of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of
common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing
two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for
typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated
QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets
for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively.
Availability and implementation: Source code in C++ and MPI running on Linux systems as well as a
reference manual are available at http://msaprobs.sourceforge.net
Contact: jgonzalezd@udc.es

1 Introduction
MSAProbs (Liu et al., 2010) is a cutting-edge tool to compute protein
multiple sequence alignments (MSAs). A number of recent benchmark
studies such as Sievers et al. (2011); Rivas and Eddy (2015); Katoh and
Standley (2016) have shown its high accuracy. However, the runtime
of MSAProbs can be relatively high for input datasets consisting of
several hundreds or a few thousand sequences. Since molecular biologists
frequently need to compute such multiple alignments, reducing runtimes
is of high importance. The QuickProbs tool (Gudyś and Deorowicz, 2014)
addressed this problem by adapting the MSAProbs approach to GPUs.
Nevertheless, such specialized hardware accelerators have limited memory
that can make QuickProbs fail for large input datasets.

In this paper we present MSAProbs-MPI, a message-passing
parallelization of MSAProbs that returns the same alignment results but
in much shorter times by exploiting the resources available on common
multicore clusters. Acceleration of MSA on compute clusters has been
recently discussed (Orobitg et al., 2015). However, the accuracy of this
parallelization is limited to that of T-Coffee (Notredame et al., 2000). Our
approach obtains the same accuracy as MSAProbs (higher than T-Coffee,
as shown in the studies cited in the previous paragraph) and, as will be
shown in Section 3, is able to significantly reduce alignment runtimes.

2 Implementation
MSAProbs-MPI uses a progressive alignment approach based on four
stages: 1) Calculation of posterior probability matrices and pairwise
distances; 2) Construction of a guide tree using all the pairwise
distances, as well as weighting of the sequences; 3) Weighted consistency
transformation of all posterior probability matrices; 4) Final alignment
using the guide tree and the transformed probability matrices, followed
by an iterative refinement. We refer to Liu et al. (2010) for more
detailed information. All MSAProbs-MPI configuration parameters are
specified in the command line. An explanation of all the arguments, as
well as installation instructions, are included in the reference manual
of MSAProbs-MPI. The Supplementary Table 1 shows the percentage of
runtime spent by each stage during different MSAProbs executions on a
single node. The first and third stages are responsible for most execution
time as they work over all possible sequence pairs (O(n2)). Consequently,
we have focused on reducing the runtime of these two stages using a hybrid
MPI/OpenMP approach.

In MSAProbs-MPI all processes start their execution by reading the
whole input file in parallel with efficient MPI I/O routines. Subsequently,
they calculate the posterior probability matrices and pairwise distances of
different sequence pairs. All processes deal with the same number of pairs
to balance their workload. Our tool includes a second level of parallelism
in this first stage by maintaining the OpenMP directives of MSAProbs and

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



i
i

“BIOINF-2016-0709_R1_v2” — 2016/8/3 — 12:51 — page 2 — #2 i
i

i
i

i
i

2 J. González-Domínguez et al.

Table 1. Evaluation of MSAProbs-MPI for 8 and 32 nodes containing two Intel Haswell 2680 processors each (using one MPI process per node and 24 OpenMP
threads per process). It is compared to the original MSAProbs (version 0.9.7) using 24 threads on a single node and to QuickProbs (version 2.0) executed on
one NVIDIA K20 GPU. All alignments have been computed using five passes of consistency transformations and one pass of iterative refinement. Speedups are
calculated over the MSAProbs runtimes and b indicates the employed number of blocks. Experiments marked as “-” failed due to memory constraints.

Dataset Num. Seqs. Avg. Length MSAProbs MSAProbs-MPI (8 nodes) MSAProbs-MPI (32 nodes) QuickProbs
Time(m) Time(m) Speedup b Time(m) Speedup b Time(m) Speedup

PF02330 708 266 11.70 2.58 4.53 1 1.13 10.35 1 3.57 3.28
PF05103 968 219 18.80 4.35 4.32 1 1.90 9.89 1 5.92 3.18
PF04777 1022 348 38.82 7.97 4.87 1 3.32 11.69 1 11.57 3.36
PF07085 975 512 64.88 13.67 4.75 1 5.58 11.63 1 23.02 2.82
PF10150 1635 691 336.18 68.92 4.88 10 23.83 14.11 5 - -
PF08699 1543 885 495.92 106.02 4.68 10 31.42 15.78 5 - -

thus creating several threads per MPI process. These threads work with
different sequence pairs in parallel but each thread can only compute the
probability matrices and pairwise distances of sequence pairs associated
to its corresponding MPI process. At the end of the first stage the posterior
probability matrices are saved in memory (each process only stores the
matrices of its associated pairs) and the pairwise distances are gathered
into Process 0. Process 0 then sequentially constructs the guide tree and
broadcasts the sequence weights. Parallelizing this second stage is not
necessary as it is computationally negligible (see Supplementary Table 1).

In Stage 3 each process transforms the posterior probability matrices
that have been saved in its local memory. This transformation is performed
by several matrix-matrix products, and matrices stored in the memory of
other processes are required. We divided the transformation stage into
P − 1 steps, P being the total number of processes, and we employed a
ring communication pattern. In Step i Process p receives in a buffer the
matrices stored in Process (p + i) mod P and performs the associated
matrix products. For very large datasets this buffer can cause memory
problems. Consequently, we developed a block-based approach where the
matrices associated to each process are divided into b smaller blocks (b
is specified by the user through command line). Instead of one message
per step, each process sends and receives b messages and performs the
matrix products with the corresponding data. Hence, using more blocks
increases the number of messages and the communication performance
overhead, but the advantage is that the required size of the buffer is reduced.
Nonblocking MPI routines are used to to overlap the matrix products
and the communications in order to reduce the mentioned performance
overhead. Note that, due to the required buffers to asynchronously send and
receive matrices and additional data structures (dense matrices) necessary
to save partial results of the products between communication steps, the
memory requirements of this phase are higher than in MSAProbs. Similar to
Stage 1, each process can create several threads that calculate the different
matrix products in parallel.

Finally, the transformed matrices are gathered by Process 0, which also
completes the final alignment and writes the output file. MSAProbs-MPI
follows the approach of QuickProbs and provides OpenMP parallelism to
the final alignment (Stage 4) on Process 0.

3 Results
A cluster consisting of 32 nodes (connected through InfiniBand FDR)
containing two Intel Haswell 2680 processors each (24 cores and 128GB of
RAM per node), and six different real protein families datasets downloaded
from the Pfam database were used for performance evaluation. Table 1
shows the results of the original MSAProbs and our hybrid MPI/OpenMP
implementation. Both tools were compiled with Intel ICC/MPI version
16.0.2 and full optimization options (-O3). The table also includes the

runtime of QuickProbs on a K20 GPU, compiled with the OpenCL support
of GCC version 4.9.2 and full optimization options. We do not include
a comparison with other available distributed-memory-based MSA tools
such as MTA-TCoffee as they have been shown to be less accurate for
several benchmarks (Orobitg et al., 2015).

We have also verified that the alignments provided by MSAProbs
and MSAProbs-MPI are exactly the same. Consequently, we can assess
that our parallel approach maintains the accuracy of the original tool.
Table 1 shows that the use of our hybrid MPI/OpenMP implementation on
a multicore cluster significantly reduces runtimes for the selected datasets
with varying number of input sequences and average sequence lengths.
For instance, MSAProbs needs more than eight hours to align the large
PF08699 dataset, even when exploiting the 24 cores of the node, while our
32-node distributed-memory version reduces this runtime to only around
half an hour (speedup of 15.78). The Supplementary Tables 2-4 and Figure
1 provide information about the performance of the different stages of the
algorithm, showing that both the calculation of the posterior probability
matrices and the weighted consistency transformation are accelerated.
Among them, the first stage obtains higher speedups as no communication
overhead is involved. Finally, the experimental evaluation shows that
eight nodes of our cluster are enough for MSAProbs-MPI to outperform
QuickProbs on specialized accelerator hardware. Furthermore, our tool is
able to complete the alignments of the largest datasets while QuickProbs
fails due to GPU memory constraints.

References
Gudyś, A. and Deorowicz, S. (2014). QuickProbs: a fast multiple sequence

alignment algorithm designed for graphics processors. PLOS One, 9(2).
Katoh, K. and Standley, D. M. (2016). A simple method to control

over-alignment in the MAFFT multiple sequence alignment program.
Bioinformatics, Online.

Liu, Y. et al. (2010). MSAProbs: multiple sequence alignment based
on pair hidden Markov models and partition posterior probabilities.
Bioinformatics, 26(16), 1958–1964.

Notredame, C. et al. (2000). T-Coffee: a novel method for fast and accurate
multiple sequence alignment. J. of Molecular Biology, 32(1), 205–217.

Orobitg, M. et al. (2015). High performance computing improvements
on bioinformatics consistency-based multiple sequence alignment tools.
Parallel Computing, 42, 18–34.

Rivas, E. and Eddy, S. R. (2015). Parameterizing sequence alignment with
an explicit evolutionary model. BMC Bioinformatics, 16(406).

Sievers, F. et al. (2011). Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega. Molecular Systems
Biology, 7(539).


