
“mardre” — 2017/4/3 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Applications Note

Sequence analysis

MarDRe: efficient MapReduce-based removal of
duplicate DNA reads in the cloud
Roberto R. Expósito∗, Jorge Veiga, Jorge González-Domínguez and Juan
Touriño

Grupo de Arquitectura de Computadores, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: This paper presents MarDRe, a de novo cloud-ready duplicate and near-duplicate removal tool
that can process single-end and paired-end reads from FASTQ/FASTA datasets. MarDRe takes advantage
of the widely adopted MapReduce programming model to fully exploit Big Data technologies on cloud-
based infrastructures. Written in Java to maximize cross-platform compatibility, MarDRe is built upon the
open-source Apache Hadoop project, the most popular distributed computing framework for scalable Big
Data processing. On a 16-node cluster deployed on the Amazon EC2 cloud platform, MarDRe is up to 8.52
times faster than a representative state-of-the-art tool.
Availability and Implementation: Source code in Java and Hadoop as well as a user’s guide are freely
available under the GNU GPLv3 license at http://mardre.des.udc.es.
Contact: rreye@udc.es

1 Introduction
The unprecedented deluge of data produced by Next Generation
Sequencing (NGS) platforms cannot be coped with traditional data
processing systems, which has spurred the use of Big Data and cloud
computing technologies (O’Driscoll et al., 2013). On the one hand,
MapReduce (Dean and Ghemawat, 2008) is Google’s solution for scalable
Big Data analysis on commodity hardware, being Hadoop the most
popular open-source implementation. Hadoop uses its own distributed file
system (HDFS) to store large datasets across the locally attached disks of
the computing nodes. The Hadoop scheduler tries its best to co-locate
computing tasks on the nodes where the input data reside, improving
data locality while minimizing data movements across the network.
This data-parallel model differs widely from that of traditional High
Performance Computing (HPC), which generally relies on the Message
Passing Interface (MPI) and the availability of network/parallel file systems
(e.g., Lustre), where data are distributed from dedicated storage nodes to
computing nodes over the network. Furthermore, Hadoop provides built-
in fault-tolerance capabilities, while MPI cannot deal with node failures.
On the other hand, cloud computing allows users to hire infrastructure
over the Internet on a pay-as-you-go basis, thereby avoiding huge capital
investments and maintenance costs. Public cloud providers are proving
very popular for Big Data analysis by offering easy-to-use cloud services
that enable to set up elastic virtual clusters to exploit supercomputing-level
power. Deployment of a Hadoop cluster in the cloud has gained increasing

attention in recent years as a convenient, cost-effective and scalable way
to store and analyze biological data (Zou et al., 2013).

Given the rapidly increasing size of NGS datasets, preprocessing
is often required to either reduce their sizes or ensure the necessary
data quality for further analysis. One preprocessing step is the removal
of duplicate DNA reads that are introduced, for instance, due to PCR
amplification (Ebbert et al., 2016), being the de novo strategy the preferred
one when a complete reference genome is not available for mapping-
based tools (Pireddu et al., 2011). However, existing de novo removal
tools that can be deployed on distributed systems do not fully exploit Big
Data and cloud computing technologies. ParDRe (González-Domínguez
and Schmidt, 2016) is a hybrid MPI/multithreaded tool intended for HPC
systems. Nevertheless, its performance on cloud platforms is heavily
limited by its poor data access efficiency, caused by the limited network
bandwidth and the unavailability of high-performance file systems in
the cloud. Fulcrum (Burriesci et al., 2012) is a Python-based tool that
provides two distributed modes: (1) local-network mode, which uses the
parallel Python library; and (2) MapReduce mode, which uses HiveQL
and Python over Hadoop streaming. However, the MapReduce mode is
not publicly available in the bundle distribution, which lacks the required
source files. Furthermore, Fulcrum only supports FASTQ datasets, and its
performace has proved to be significantly worse than ParDRe according to
the experimental evaluation of (González-Domínguez and Schmidt, 2016),
mainly due to its inefficient sequential way of grouping similar sequences.

This paper presents MarDRe, a de novo MapReduce-based parallel
tool to remove duplicate and near-duplicate reads through the clustering
of single-end and paired-end sequences from FASTQ/FASTA datasets.
MarDRe can be considered the Big Data counterpart of ParDRe, but

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



“mardre” — 2017/4/3 — page 2 — #2

2 R.R. Expósito et al.

Table 1. Runtime and accuracy results for ParDRe and MarDRe removing near-duplicate reads on a 16-node Amazon EC2 cluster. Speedups shown are the MarDRe
runtimes over the ParDRe ones.

Single-end: SRR377645 (213 million 100-bp reads) Paired-end: SRR948355 (69 million 202-bp reads)
Prefix
Length

#Mis-
matches

ParDRe MarDRe
Speedup

ParDRe MarDRe
Speedup

Runtime %Removed Runtime %Removed Runtime %Removed Runtime %Removed
15 1 2320 sec 8.35% 440 sec 8.35% 5.27 1300 sec 8.55% 157 sec 8.44% 8.28
15 3 2508 sec 11.61% 511 sec 11.60% 4.91 1283 sec 10.37% 155 sec 10.28% 8.28
25 1 2160 sec 8.15% 272 sec 8.14% 7.94 1301 sec 8.49% 153 sec 8.38% 8.50
25 3 2097 sec 10.90% 292 sec 10.90% 7.18 1286 sec 10.25% 151 sec 10.16% 8.52

significantly improving its performance on distributed systems, especially
on cloud-based infrastructures.

2 Implementation
MarDRe is a Java-based tool that implements a prefix-suffix approach
(Burriesci et al., 2012) which considers as potentially duplicate reads those
with an identical prefix. Once the reads have been clustered according to
their prefixes, their suffixes are compared. This prefix-clustering approach
is conceptually well suited for MapReduce-style chunk processing, as each
cluster can be generated in parallel during the map phase, while those reads
in the same cluster can be compared during the reduce phase.

MapReduce jobs typically process data chunks in line-based text
formats, where identifying individual records is simple as line boundaries
are denoted by newline characters. However, FASTQ/FASTA are text-
based formats that involve multiple lines per sequence. Therefore, MarDRe
implements custom Hadoop input formats and record readers in order to
properly parse the reads from those widely adopted sequence formats.

2.1 Single-end mode

This mode has been implemented using one MapReduce job followed by
a copy-merge operation to provide a single output file. The input dataset
is first partitioned into a number of HDFS blocks, with each map task
operating on a single block at a time. During the map phase, mappers
process in parallel their corresponding input blocks and emit key-value
pairs where the value is the parsed read and the key is generated by
the first l encoded bases, being l the prefix length specified by the user
in the command line. The clustering itself is naturally performed by
the underlying grouping-by-key operation of the MapReduce pipeline,
where the key-value pairs are first partitioned across the available reducers
according to their keys (i.e., their prefixes), and then they are sorted by
key within each partition (i.e., within each cluster). In the reduce phase,
each reducer is in charge of computing different clusters according to the
default Hadoop hash-based partitioner. For each cluster, reducers take the
first read as a seed and compare its suffix with that of the other reads,
computing the number of mismatches (i.e., the distance) for each one.
Next, only those reads whose distance difference is less or equal than
m are actually compared, being m the number of allowed mismatches
specified by the user. This comparison step has been optimized by using a
4-bit encoding for the suffix bases and a bitwise XOR operation to avoid
base-per-base comparisons, just as done in ParDRe. Finally, non-duplicate
reads are written to HDFS (one output file per reducer).

After the MapReduce job has finished, an HDFS-level operation is
performed to merge all the intermediate output files into the final output.
This step can be disabled via a configurable option, which can be useful
for subsequent data processing (e.g., sequence alignment) on HDFS.

2.2 Paired-end mode

This mode requires two input datasets with a one-to-one mapping between
the forward (or “left”) and reverse (“right”) reads of each sequence. Before

paired-end reads can be clustered, both reads must first be joined, which
involves chaining two MapReduce jobs. The first job performs this join-
like operation by parsing both input files as separate single-end datasets.
Thus, mappers emit each forward/reverse read as value and its starting
position in the input file (i.e., the offset) as key. In this way, the two reads
of each sequence are sent to the same reducer, which outputs key-value
pairs to HDFS, where the value consists of both reads and the key is the
prefix of the “left” read.

The second job carries out the duplicate removal, being similar to that
of the single-end mode but taking as input the output files of the former
job. First, paired-end reads are parsed from HDFS during the map phase,
emitting the prefix of the “left” read as key to perform the clustering. Next,
reducers compare the paired-end reads that belong to the same cluster in
a similar way as before, but taking into account both ends of each read.

3 Performance evaluation
The experiments have been carried out on the Amazon EC2 cloud using a
16-node virtual cluster based on the c3.8xlarge instance type. Each instance
provides 32 cores, 60 GB of memory, 2 local SSD disks and 10 Gigabit
Ethernet network. The Linux distribution selected for the performance
evaluation was Amazon Linux 2016.09 with kernel 4.4.51. ParDRe v1.3.5
was compiled with GNU v4.8.3 (-O3 flag) and Open MPI v1.10.5, using the
hybrid MPI/multithreaded mode with the best combination of processes
and threads. The network file system for ParDRe was Amazon Elastic File
System (EFS), which provides EC2 instances with shared, low-latency
access to an NFSv4-like storage system. Regarding MarDRe, Hadoop
v2.7.3 was used. The number of map and reduce slots on each node was
set to the number of cores, which is a common setting for Hadoop clusters.
The HDFS block size was set to 512 MB while the Java environment used
was OpenJDK v1.8.0_121.

Two different sets of experiments have been conducted on the Amazon
EC2 cloud. On the one hand, the runtime and accuracy (i.e., the percentage
of removed reads) of the tools have been analyzed on the 16-node EC2
cluster (Section 3.1). These experiments have evaluated both single-end
and paired-end modes using FASTQ datasets while varying the prefix
length (l) and the number of allowed mismatches (m). On the other hand,
the second set of experiments consists of analyzing the strong scalability
of the tools (Section 3.2). For doing so, the paired-end mode has been
evaluated using 1, 2, 4, 8 and 16 nodes (i.e., from 32 up to 512 cores).
Scalability results are shown for three different prefix length values while
allowing only one mismatch. Finally, the reported runtimes for both tools
are the mean value of 10 executions for each experiment.

3.1 Runtime and accuracy results

Table 1 summarizes the runtime to remove near-duplicate reads for
single-end and paired-end modes using four different configurations, also
reporting the percentage of removed reads. As can be observed, there
are negligible differences in levels of removed duplicates, caused by the
different order when comparing the reads within the cluster, as Hadoop



“mardre” — 2017/4/3 — page 3 — #3

MarDRe 3

Table 2. Strong scalability results for ParDRe and MarDRe removing near-duplicate reads of a paired-end dataset and allowing one mismatch on Amazon EC2.
Speedups shown are the MarDRe runtimes over the ParDRe ones.

Paired-end: SRR948355 (69 million 202-bp reads)

#Nodes #Cores
Prefix Length = 10 Prefix Length = 15 Prefix Length = 25

ParDRe MarDRe Speedup ParDRe MarDRe Speedup ParDRe MarDRe Speedup
1 32 1014 sec 1435 sec 0.71 1015 sec 1179 sec 0.86 1008 sec 1041 sec 0.97
2 64 840 sec 782 sec 1.07 845 sec 686 sec 1.23 831 sec 653 sec 1.27
4 128 901 sec 511 sec 1.76 911 sec 524 sec 1.74 915 sec 478 sec 1.91
8 256 1126 sec 267 sec 4.22 1120 sec 234 sec 4.79 1115 sec 233 sec 4.79

16 512 1306 sec 169 sec 7.73 1300 sec 157 sec 8.28 1301 sec 153 sec 8.50

always sorts key-value pairs by key after the map phase. Regarding
execution times, the results show that MarDRe clearly outperforms
ParDRe, being the average speedups 6.33 and 8.40 for single-end and
paired-end modes, respectively. As mentioned in Section 1, the main
reason is the poor I/O efficiency of ParDRe due to the limited network
bandwidth in a virtualized cloud environment. In ParDRe, all processes
read the input files completely, discarding those reads that do not belong to
their corresponding clusters. This causes high network overhead and heavy
EFS contention. In MarDRe, mappers only parse their corresponding
HDFS blocks that are generally stored on local disks, which provides
better data locality and avoids contention for shared storage resources.

3.2 Scalability results

Table 2 shows the strong scalability results removing near-duplicate reads
of a paired-end dataset using three different prefix length values and
allowing one mismatch. As can be seen, ParDRe is the fastest tool on
1 node, especially for the lowest prefix length value, while MarDRe
outperforms ParDRe from 2 nodes on. In fact, ParDRe is not able to
scale from this point, obtaining roughly similar runtimes on two nodes (64
cores) as on four (128 cores). Moreover, ParDRe runtimes are worse on
eight and sixteen nodes than on one node. However, MarDRe is able to
scale reasonably well using all the available cores. More specifically, the
average speedup for MarDRe when using 16 nodes vs 1 is around 7.60.
Furthermore, MarDRe runtimes using 16 nodes significantly outperform
the best results for ParDRe (i.e., using 2 nodes). In this case, the average
speedup (i.e., MarDRe-16 nodes vs ParDRe-2 nodes) is 5.26. The main

conclusion that can be drawn from these results is that while ParDRe can
be considered the fastest tool for multicore systems, MarDRe would be
the preferred choice on distributed ones.

Funding
This work was supported by the Ministry of Economy and Competitiveness
of Spain [TIN2016-75845-P (AEI/FEDER, UE)]; and by the FPU Program
of the Ministry of Education of Spain [FPU014/02805].

References
Burriesci, M. S., Lehnert, E. M., and Pringle, J. R. (2012). Fulcrum: condensing

redundant reads from high-throughput sequencing studies. Bioinformatics, 28(10),
1324–1327.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107–113.

Ebbert, M. T. et al. (2016). Evaluating the necessity of PCR duplicate removal
from next-generation sequencing data and a comparison of approaches. BMC
Bioinformatics, 17(7), 239.

González-Domínguez, J. and Schmidt, B. (2016). ParDRe: faster parallel duplicated
reads removal tool for sequencing studies. Bioinformatics, 32(10), 1562–1564.

O’Driscoll, A., Daugelaite, J., and Sleator, R. D. (2013). ‘Big data’, Hadoop and
cloud computing in genomics. Journal of Biomedical Informatics, 46(5), 774–781.

Pireddu, L., Leo, S., and Zanetti, G. (2011). SEAL: a distributed short read mapping
and duplicate removal tool. Bioinformatics, 27(15), 2159–2160.

Zou, Q. et al. (2013). Survey of MapReduce frame operation in bioinformatics.
Briefings in Bioinformatics, 15(4), 637–647.


