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Abstract

The use of Java for parallel programming on clusters ac-
cording to the message-passing paradigm is an attractive
choice. In this case, the overall application performance
will largely depend on the performance of the underlying
Java message-passing library. This paper evaluates, models
and compares the performance of MPI-like point-to-point
and collective communication primitives from selected Java
message-passing implementations on clusters with differ-
ent interconnection networks. We have developed our own
micro-benchmark suite to characterize the message-passing
communication overhead and thus derive analytical latency
models.

1. Introduction

Cluster computing architectures are an emerging
option for organizations as they offer a reasonable
price/performance ratio. The message-passing model pro-
vides programming flexibility and generally good per-
formance on these architectures. Java message-passing
libraries are an alternative for developing parallel and dis-
tributed applications due to appealing characteristics such
as platform independence, portability and integration into
existing Java applications, although probably at a perfor-
mance cost. In this work, Java message-passing libraries
are analyzed in order to estimate overheads with sim-
ple expressions. Our goal is to identify design faults in
the communication routines, as well as to provide perfor-
mance results for Fast Ethernet, Myrinet and SCI (Scalable
Coherent Interface) clusters which can guide develop-
ers to improve their Java parallel applications.
Related work about Java message-passing evaluation are

the papers by Stankovic and Zhang [18], and by Getov et
al. [7]. Both works do not derive performance analytical

models. Moreover, the experimental results in [7] are re-
stricted to point-to-point primitives on an IBM SP-2, and the
scenarios of the experiments in [18] are not representative
(eg, they carry out collective measures using up to 5 proces-
sors of different architectures connected via 10Mbps Ether-
net). Finally, these works are based on currently out-of-date
Java message-passing libraries and programming environ-
ments.

2. Java Message-Passing Libraries

Research efforts to provide MPI for Java are focused on
two main types of implementations: Java wrapper and pure
Java. On the one hand, the wrapper-based approach pro-
vides efficient MPI communication through calling native
methods (in C, C++ or Fortran) using the Java Native In-
terface (JNI). The major drawback is lack of portability:
only a few combinations of platforms, message-passing li-
braries and JVMs are supported due to interoperability is-
sues. The pure Java approach, on the other hand, provides a
portable message-passing implementation since the whole
library is developed in Java, although the communication
could be relatively less efficient due to the use, in general,
of the RMI protocol.
There is a great variety of Java message-passing libraries

that use different approaches and APIs due to the lack of
a standard MPI binding for Java, although the Message-
Passing Working Group within the Java Grande Forum
(www.javagrande.org) is working on a standard in-
terface, named MPJ [1], in pure Java. One of the major
issues that has arisen is how the Java mechanisms can be
made useful in association with MPI: it is under study if and
how Java’s thread model can be used instead of the process-
based approach of MPI.
In this work, we have focused on the following MPI-

based libraries:

• mpiJava [2], the most active Java wrapper project,



consists of a collection of wrapper classes (with a
C++-like interface) that call a native MPI implemen-
tation through JNI.

• JMPI [14], a pure Java implementation developed for
academic purposes at the University of Massachusetts,
following the MPJ specification.

• CCJ [16], a pure Java communication library with an
MPI-like syntax not compliant with the MPJ specifica-
tion. It makes use of Java capabilities such as a thread-
based programming model or sending of objects.

Other Java message-passing libraries are:

• JavaMPI [13], an MPI Java wrapper created with the
help of JCI, a tool for generating Java-to-C interfaces.
The last version was released in January 2000.

• M-JavaMPI [9] is another wrapper approach with pro-
cess migration support that runs on top of the stan-
dard JVM. Unlike mpiJava and JavaMPI, it does
not use direct binding of Java programs and MPI.
M-JavaMPI follows a client-server message redirec-
tion model that makes the system more portable, that
is, MPI-implementation-independent. It is not pub-
licly available yet.

• JavaWMPI [11] is a Java wrapper version built on
WMPI, a Windows-based implementation of MPI.

• MPIJ is a pure Java MPI subset developed as part of
the DOGMA project (Distributed Object Group Meta-
computing Architecture) [8]. MPIJ has been removed
from DOGMA since release 2.0.

• the commercial JMPI project [4] by MPI Software
Technology (do not confuse with [14]) intends to build
a pure Java version of MPI specialized for commer-
cial applications. The project has been on hold since
1999.

• PJMPI [12] is a pure Java message-passing implemen-
tation strongly compatible with the MPI standard that
is being developed at the University of Adelaide in
conjunction with a non-MPI message-passing environ-
ment called JUMP (not publicly available yet).

• jmpi [5] is another pure Java implementation of MPI
built on top of JPVM (see below). The project has been
left idle since 1999.

Far less research has been devoted to PVM-based li-
braries. The most representative projects were JavaPVM
(renamed as jPVM [20]), a Java wrapper to PVM (last re-
leased in April 1998), and JPVM [6], a pure Java imple-
mentation of PVM (last released in February 1999). Perfor-
mance issues of both libraries were studied in [22].

3. Message-Passing Performance Models

In order to characterize Java message-passing perfor-
mance, we have followed the same approach as in [3]
and [21], where the performance of MPI C routines was
modeled on a Fast Ethernet cluster (only MPI-I/O prim-
itives) and on the Fujitsu AP3000 multicomputer, respec-
tively.
Thus, in point-to-point communications, message la-

tency (T ) can be modeled as an affine function of the mes-
sage length n: T (n) = ts + tbn, where ts is the startup
time, and tb is the transfer time per data unit (one byte from
now on). Communication bandwidth is easily derived as
Bw(n) = n/T (n). A generalization of the point-to-point
model is used to characterize collective communications:
T (n, p) = ts(p)+ tb(p)n, where p is the number of proces-
sors involved in the communication.
The Low Level Operations section of the Java Grande

Forum Benchmark Suite is not appropriate for our model-
ing purposes (eg, it only considers seven primitives and tim-
ing outliers are not discarded). We have thus developed our
own micro-benchmark suite [19] which consists of a set of
tests adapted to our specific needs. Regarding point-to-point
primitives, a ping-pong test takes 150 measurements of the
execution time varying the message size in powers of four
from 0 bytes to 1 MB. We have chosen as test time the sex-
tile (25th value) of the increasingly ordered measurements
to avoid distortions due to timing outliers. Moreover, we
have checked that the use of this value is statistically better
than the mean or the median to derive our models (we have
obtainedminimal least square errors with this value). As the
millisecond timing precision in Java is not enough for mea-
suring short message latencies, in these cases we have gath-
ered several executions to achieve higher precision. The pa-
rameters ts and tb were derived from a linear regression of
T vs n. Similar tests were applied to collective primitives,
but also varying the number of processors (from 2 up to the
number of available processors in our clusters). A Barrier
was included to avoid a pipelined effect and to prevent the
network contention that might appear by the overlap of col-
lective communications executed on different iterations of
the test. The parameters of the model were obtained from
the regression of T vs n and p. Double precision addition
was the operation used in the experiments with reduction
primitives.

4. Experimental Results

4.1. Experiment Configuration

The tests were performed using two clusters. The first
cluster consists of 16 single-processor nodes (PIII at 1
GHz with 512 MB of main memory) interconnected via



Primitive Library ts(p) tb(p) T (16B, 8) Bw(1MB, 8)
{µs} {ns/byte} {µs} {MB/s}

Sen
d

MPICH 69 90.3 72 11.061
mpiJava 101 100.7 105 9.923
CCJ 800 138.2 800 7.217
JMPI 4750 154.4 4750 6.281

Bar
rier

MPICH 26 + 33p N/A N/A N/A
mpiJava 44 + 33p N/A N/A N/A
CCJ 382 + 209p N/A N/A N/A
JMPI 1858 + 521p N/A N/A N/A

Bro
adc
ast

MPICH 7 + 117!lp" −0.3 + 90.4!lp" 364 3.686
mpiJava 19 + 124!lp" 10.1 + 90.5!lp" 406 3.546
CCJ −430 + 1430!lp" 6.4 + 130.4!lp" 3800 2.506
JMPI −9302 + 7151p −123.2 + 175.7p 41600 0.752

Sca
tter

MPICH 92 + 18p 39.7 + 11.1!lp" 232 13.077
mpiJava 95 + 19p 52.6 + 10.0!lp" 250 11.522
CCJ 534 + 333p 51.6 + 20.2!lp" 5400 7.172
JMPI −5276 + 6938p 102.1 + 1.5!lp" 48000 6.347

Gat
her

MPICH 31 + 46p 37.7 + 13.3(lp) 321 12.418
mpiJava 45 + 45p 38.6 + 14.1(lp) 358 10.790
CCJ 780 + 210p 47.1 + 9.6(lp) 4200 12.221
JMPI 2000 + 2000p 70.8 + 0.9(lp) 15600 11.497

Allg
athe
r MPICH −78 + 84p 52.2 + 11.2!lp" 620 4.250

mpiJava −65 + 89p 47.9 + 15.2!lp" 640 4.297
CCJ 442 + 679p 50.6 + 76.6!lp" 9200 2.028
JMPI −5259 + 7929p 108.6 + 63.1!lp" 48000 2.922

Allt
oall

MPICH 32 + 34p 31.6 + 37.1(lp) 277 3.434
mpiJava 38 + 35p 54.2 + 37.3(lp) 284 3.411
JMPI −6836 + 8318p 103.9 + 65.6!lp" 45800 2.940

Red
uce

MPICH 103 + 25p 2.7 + 99.6!lp" 383 3.320
mpiJava 113 + 25p 11.9 + 99.7!lp" 394 3.051
CCJ 454 + 273p 11.9 + 92.7!lp" 3000 3.218

Allr
edu
ce MPICH 90 + 32p 3.0 + 189.7!lp" 453 1.747

mpiJava 102 + 32p 16.6 + 194.5!lp" 473 1.663
CCJ 18 + 591p −110.8 + 358.5!lp" 6400 1.105

Red
uce
sctr

MPICH 78 + 41p 44.0 + 110.0$lp% 418 2.649
mpiJava 90 + 42p 65.4 + 112.7$lp% 440 2.459

Sca
n MPICH 83 + 25p −90.2 + 97.6$2lp% 426 2.061

mpiJava 91 + 27p −69.1 + 99.3$2lp% 456 1.936

Table 1. Fast Ethernet: analytical models and measured metrics (lp = log2 p)

Fast Ethernet and Myrinet 2000. Each node has a Server-
Works CNB20LE chipset and a M3F-PCI64C-2 Myrinet
card plugged into a 64bit/33MHz PCI slot. The OS is Linux
Red Hat 7.1, kernel 2.4.7-10 and the C compiler is gcc 2.96.
This cluster was also used for benchmarking Fast Ethernet.
The second cluster (#152 in June 2003 Cluster Top500 list)
consists of 8 dual-processor nodes (PIV Xeon at 1.8 GHz
with hyperthreading disabled and 1GB of memory) inter-
connected via Fast Ethernet and SCI (2-D torus topology).
Each node has an Intel E7500 chipset and a D334 SCI card
plugged into a 64bit/133MHz PCI-X slot. The OS is Red

Hat 7.3, kernel 2.4.19 and the C compiler is gcc 3.2.2. We
have used the Java Virtual Machine IBM JVM 1.4.0 with
JITC technology.
Three Java message-passing libraries were analyzed for

each network: the Java wrapper mpiJava 1.2.5, and the
pure Java libraries CCJ 0.1 and JMPI. They have been se-
lected as they are the most outstanding projects publicly
available. We have used the same benchmark codes for
mpiJava and JMPI, whereas CCJ codes are quite differ-
ent as this library does not follow the MPJ standard. As
the mpiJava wrapper implementation needs an underlying



Primitive Library ts(p) tb(p) T (16B, 8) Bw(1MB, 8)
{µs} {ns/byte} {µs} {MB/s}

Sen
d

MPICH-GM 9 5.40 10 183.30
mpiJava 15 5.26 16 189.21
CCJ 650 33.68 700 29.13
JMPI 3850 52.42 3850 17.88

Bar
rier

MPICH-GM −3 + 16!lp" N/A N/A N/A
mpiJava 5 + 15!lp" N/A N/A N/A
CCJ 817 + 171p N/A N/A N/A
JMPI 477 + 452p N/A N/A N/A

Bro
adc
ast

MPICH-GM 3 + 8!lp" 0.012 + 5.741!lp" 28 57.77
mpiJava 20 + 17!lp" 0.036 + 5.263!lp" 101 62.78
CCJ −800 + 1600!lp" −10.64 + 40.69!lp" 4000 8.72
JMPI −8617 + 5356p −61.57 + 66.70p 32400 1.80

Sca
tter

MPICH-GM −7 + 9p 4.321 + 0.414!lp" 65 190.26
mpiJava 42 + 10p 7.223− 0.358!lp" 131 167.95
CCJ 217 + 604p 19.11 + 10.38!lp" 5000 18.26
JMPI −8287 + 6438p 46.04 + 11.66!lp" 40400 9.23

Gat
her

MPICH-GM 7 + 5p 3.813 + 0.505!lp" 40 184.90
mpiJava 47 + 5p 5.043 + 0.175!lp" 91 181.35
CCJ 600 + 400p 17.79 + 4.668!lp" 4000 28.03
JMPI 2165 + 1271p 44.56− 1.752!lp" 11800 18.99

Allg
athe
r MPICH-GM −10 + 15p 5.308 + 1.098!lp" 104 116.48

mpiJava 30 + 17p 8.560 + 0.483!lp" 173 100.63
CCJ 817 + 944p 13.60 + 20.79p 9400 5.25
JMPI −8296 + 7506p −31.16 + 41.36p 42400 2.85

Allt
oall

MPICH-GM −10 + 13p 4.215 + 2.717!lp" 94 79.99
mpiJava 37 + 15p 7.477 + 1.87!lp" 162 71.61
JMPI −11443 + 7619p −29.78 + 40.96p 39800 2.90

Red
uce

MPICH-GM 12 + 3p 2.830 + 10.94!lp" 35 28.08
mpiJava 45 + 4p 5.267 + 11.27!lp" 91 25.08
CCJ 783 + 196p 9.956 + 32.68!lp" 2400 9.14

Allr
edu
ce MPICH-GM 18 + 4p 3.112 + 16.51!lp" 63 19.12

mpiJava 44 + 6p 4.01 + 15.54!lp" 112 19.61
CCJ 565 + 531p −67.66 + 136.4!lp" 5600 3.06

Red
uce
sctr

MPICH-GM −3 + 13p 9.383 + 10.91!lp" 98 24.03
mpiJava 24 + 15p 11.59 + 11.62!lp" 152 21.27

Sca
n MPICH-GM 13 + 4p −4.505 + 9.376$2lp% 53 19.08

mpiJava 50 + 6p −0.229 + 10.26$2lp% 112 16.10

Table 2. Myrinet: analytical models and measured metrics (lp = log2 p)

native MPI implementation (MPI C in our experiments),
we have chosen the widely used MPICH implementation
among several MPI libraries designed for IP networks.
Thus, MPICH 1.2.4 was installed for the Fast Ethernet ex-
periments. MPICH-GM, a port of MPICH on top of GM
(a low-level message-passing system for Myrinet networks)
developed by Myricom (www.myri.com) was used for
the Myrinet tests (specifically, MPICH-GM-1.2.4..8 over
GM 1.6.3). Regarding SCI, we have used ScaMPI 1.13.8,
Scali’s (www.scali.com) high performance MPI imple-
mentation for SCI Linux clusters.

4.2. Analytical Models

Table 1 presents the estimated parameters of the la-
tency models (ts and tb) for the standard Send (we have
checked that this is the best choice in blocking point-to-
point communications) and for collective communications
on the Fast Ethernet cluster. Two experimentally measured
metrics (T (n, p) for n=16 bytes and p=8 processors, and
Bw(n, p) for n=1MB and p = 8) are also provided in or-
der to show short and long message-passing performance,
respectively, as well as to compare the different libraries for



Primitive Library ts(p) tb(p) T (16B, 8) Bw(1MB, 8)
{µs} {ns/byte} {µs} {MB/s}

Sen
d

ScaMPI 4 3.89 5 256.88
mpiJava 10 3.92 10 254.26
CCJ 500 86.16 500 11.54
JMPI 950 90.71 950 10.91

Bar
rier

ScaMPI 7 + 0.4p N/A N/A N/A
mpiJava 8 + 1.2p N/A N/A N/A
CCJ 236 + 278p N/A N/A N/A
JMPI 799 + 171p N/A N/A N/A

Bro
adc
ast

ScaMPI 6!lp" −0.105 + 4.128!lp" 18 81.71
mpiJava 33 + 7!lp" −0.197 + 4.458!lp" 48 76.71
CCJ −800 + 1400!lp" −4.242 + 93.01!lp" 3400 3.63
JMPI −2800 + 2900p −89.71 + 95.52p 20600 1.45

Sca
tter

ScaMPI −5 + 6p 2.708 + 0.255!lp" 43 284.00
mpiJava 27 + 6p 2.409 + 0.3976!lp" 76 275.43
CCJ −200 + 586p 31.01 + 20.63!lp" 4400 10.57
JMPI −1200 + 3243p 30.34 + 29.76!lp" 26200 8.11

Gat
her

ScaMPI 4 + p 0.617 + 1.233!lp" 11 230.40
mpiJava 36 + p 1.423 + 1.010!lp" 47 227.85
CCJ 300 + 364p 39.20 + 10.39!lp" 3400 14.32
JMPI 2100 + 450p 38.18 + 10.95!lp" 5000 13.17

Allg
athe
r ScaMPI −6 + 14!lp" 3.555 + 1.340!lp" 36 131.40

mpiJava 23 + 16!lp" 2.960 + 1.619!lp" 71 126.47
CCJ −200 + 1057p −62.03 + 167.7!lp" 8200 2.12
JMPI −1000 + 3971p 18.74 + 61.59!lp" 31400 4.84

Allt
oall

ScaMPI −10 + 8p 1.717 + 2.333!lp" 55 113.93
mpiJava 22 + 9p 2.363 + 2.141!lp" 95 112.25
JMPI −2400 + 3957p 18.30 + 61.77!lp" 31600 4.78

Red
uce

ScaMPI 1 + 6!lp" 9.621 + 1.778!lp" 19 66.69
mpiJava 13 + 8!lp" 9.732 + 2.008!lp" 36 63.30
CCJ 500 + 193p 42.70 + 56.35!lp" 2000 4.83

Allr
edu
ce ScaMPI −1 + 12!lp" 9.332 + 2.561!lp" 36 58.65

mpiJava 7 + 15!lp" 8.989 + 3.080!lp" 55 54.63
CCJ −200 + 657p −1.837 + 183.3!lp" 5000 1.84

Red
uce
sctr

ScaMPI −1 + 8p 12.37 + 2.088!lp" 67 53.55
mpiJava 23 + 9p 12.94 + 2.180!lp" 100 51.16

Sca
n ScaMPI −9 + 16p −3.462 + 5.222p 39 26.09

mpiJava 19 + 7p −5.725 + 8.382p 72 16.30

Table 3. SCI: analytical models and measured metrics (lp = log2 p)

each primitive. Tables 2 and 3 present the same results for
Myrinet and SCI clusters, respectively. The Fast Ethernet
and Myrinet analytical models were derived using up to 16
single-processor nodes, but the SCI models were obtained
using only one processor per dual node (and thus the mod-
els are for only 8 processors). Reduction primitives are not
implemented by the JMPI library and some advanced prim-
itives (Alltoall, Reducescatter, Scan) are not available in the
current version of CCJ.

As we can see, the MPI C primitives, which are used as
a reference to compare the performance of the Java-based
libraries, have the lowest communication overhead; mpi-
Java, as a wrapper implementation over native MPI, has

slightly larger latencies due to the overhead of calling the
native MPI routines through JNI. Regarding pure Java im-
plementations (CCJ and JMPI), both the transfer time and,
mainly, the startup time increase significantly because of the
use of RMI for interprocess communication, which incurs a
substantial overhead for each message passed. In fact, RMI
was primarily designed for communication across the In-
ternet, not for low latency networks. CCJ shows better per-
formance than JMPI as it implements an RMI optimization
that simulates asynchronous communications over the syn-
chronous RMI protocol using multithreading: send opera-
tions are performed by separate sending threads. A pool of
available sending threads is maintained to reduce thread cre-
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Figure 1. Fast Ethernet: measured and estimated metrics (collective primitives with 16 processors)

ation overhead.
Transfer times (tb(p)) present O(log2 p) complexi-

ties in almost all collective communications, which reveals
a binomial tree-structured implementation of the primi-
tives. Design faults were found in the CCJ implementa-
tions of Allgather and Allreduce, where surprisingly their
latencies are higher than those of the equivalent primi-
tives Gather+Broadcast and Reduce+Broadcast, respec-
tively. The JMPI implementation of the Broadcast is also
inefficient (it is O(p)), so that performance degrades sig-
nificantly as p increases. For instance, the Broadcast la-
tency of 1MB for 8 processors on the Fast Ethernet cluster
is three times larger than that of the equivalent Scat-
ter+Allgather.

4.3. Analysis of Performance Results

4.3.1. Point-to-point Primitives The first graph of Fig-
ures 1 – 3 shows experimentally measured (empty sym-
bols) and estimated (filled symbols) bandwidths of the Send
primitive as a function of the message length, for the differ-
ent networks. As can be seen from the upper left graph in
Figure 1, MPICH and mpiJava point-to-point bandwidths
are very close to the theoretical bandwidth of Fast Eth-
ernet (12.5 MB/s). We have observed that communication
performance on Fast Ethernet clusters is limited by the in-

terconnection technology. However, communication perfor-
mance on the Myrinet and SCI clusters is limited by several
factors, mainly network protocols, PCI buses and chipsets
(processors and memory are not important because network
cards have their own processing resources). According to
Myrinet 2000 and SCI specifications, their theoretical band-
widths are 1960 MB/s and 667 MB/s (1333 MB/s bidirec-
tional), respectively, whereas the startup time of Myrinet
is below 7µs and 1.46µs for SCI. In both networks the
chipset and the PCI bus are an important bottleneck for
communication bandwidth, because they do not reach the
transfer rate of the specifications. In our Myrinet nodes the
Myrinet/PCI interface is plugged into a 64bit/33MHz PCI
slot which achieves a maximum transfer rate of 264 MB/s.
A motherboardwith a 64bit/66MHzPCI interface would in-
crease bandwidth above 300 MB/s [15]. In the SCI nodes
the SCI D334 interface is plugged into a 64bit/133MHz
PCI-X slot which achieves a maximum transfer rate of 1056
MB/s. Currently, there is no SCI card that takes advantage
of the PCI-X capabilities and thus the interface operates at
66 MHz, resulting in a maximum transfer rate of 528MB/s.
Regardingwrapper point-to-point primitives, the bandwidth
of mpiJava Send over MPICH-GM is 198 MB/s (230 MB/s
for the low-level GM Send according to the gm debug util-
ity), whereas mpiJava Send over ScaMPI obtains 254MB/s.
Thus, mpiJava achieves 75% of available bandwidth on
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Figure 2. Myrinet: measured and estimated metrics (collective primitives with 16 processors)

Myrinet and only 48% on SCI.
Pure Java libraries (CCJ and JMPI) need IP to work. In

order to provide IP over Myrinet we had to enable Ethernet
emulation over GM, whereas ScaIP was installed to provide
IP over SCI. According to the upper left graphs of Figures 2
and 3, pure Java Send on Myrinet and SCI slightly outper-
form Fast Ethernet: startup times are in the same order of
magnitude and bandwidth is clearly higher on the Myrinet
cluster, although it is quite low as compared with the theo-
retical network bandwidth. This poor performance is due to
the communication technology (Java RMI), which is not op-
timized for low latency networks. Nevertheless, IP over GM
achieves better performance than IP over SCI because three
software layers are used in SCI to emulate IP (from upper
to lower level: ScaIP, ScaMac and ScaSCI), which degrades
SCI performance.

4.3.2. Collective Primitives Measured and estimated
bandwidths for some collective primitives are also de-
picted in Figures 1 – 3 (except the Barrier graph that
shows latencies). Note that bandwidths are not aggre-
gated, as they are computed simply by dividing message
length by communication time (T ). In many cases, the esti-
mated values (filled symbols) are hidden by the measured
values (empty symbols), which means a good model-
ing.
Fast Ethernet results are presented in Figure 1. As ex-

pected, the bandwidth of the mpiJava routine and the un-
derlying MPICH implementation are very similar (mpiJava
calls to native MPI have low overhead). Pure Java primi-
tives show poor performance for short messages (latencies
are about one order of magnitude slower than on mpiJava),
but they obtain closer results to those of the Java wrapper
library as message size increases. CCJ shows better perfor-
mance than JMPI (particularly for the Broadcast primitive)
due to the use of asynchronous messages and a more effi-
cient communication pattern design.
Figure 2 shows Myrinet bandwidths. As in Fast Ethernet

mpiJava values remain close to those of the corresponding
MPI native implementation (MPICH-GM), but the perfor-
mance gap between Java wrapper and pure Java primitives
increases significantly on Myrinet. Thus, mpiJava primi-
tives have startup times between two and six times faster
than on Fast Ethernet, and transfer times about one order
of magnitude faster; nevertheless, pure Java primitives have
startup times similar to those measured on Fast Ethernet and
transfer times between only two and three times faster than
on Fast Ethernet.
SCI bandwidths are depicted in Figure 3. As can be seen

from these graphs (and according to the models of Table 3)
mpiJava primitives on SCI have startup times between two
and three times faster than on Myrinet, slightly faster trans-
fer times (around 30%) for data movement primitives, and



256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

350

Ba
nd

w
id

th
 B

w
(n

) (
M

B/
s)

ScaMPI
mpiJava
CCJ
JMPI

Send

2 4 6 8
Processors p

1 

10 

100 

1 k

10 k

100 k

1 M

La
te

nc
y 

T(
p)

 (µ
s)

ScaMPI
mpiJava
CCJ
JMPI

Barrier

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

100

Ba
nd

w
id

th
 B

w
(n

) (
M

B/
s)

ScaMPI
mpiJava
CCJ
JMPI

Broadcast

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

Ba
nd

w
id

th
 B

w
(n

) (
M

B/
s)

ScaMPI
mpiJava
CCJ
JMPI

Scatter

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

25

50

75

100

125

150

175

200

225

250
Ba

nd
w

id
th

 B
w

(n
) (

M
B/

s)

ScaMPI
mpiJava
CCJ
JMPI

Gather

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

Ba
nd

w
id

th
 B

w
(n

) (
M

B/
s)

ScaMPI
mpiJava
CCJ

Reduce

Figure 3. SCI: measured and estimated metrics (collective primitives with 8 processors)

between two and three times faster transfer times for reduc-
tion primitives. Although pure Java startup times are faster
than onMyrinet, transfer times are around twice slower (due
to the poor IP emulation), so the gap between Java wrap-
per and pure Java performance continues to widen on SCI,
mainly for long messages.

4.3.3. Additional Performance Issues We have empiri-
cally observed that ScaMPI primitives show, in general, bet-
ter performance results than SCI-MPICH, another native
MPI implementation for SCI Linux clusters. Another re-
markable issue is the influence of the JVM on performance.
We have observed that, in general, IBM JVM with JITC ob-
tains better results than Sun JVM with HotSpot technology,
mainly for messages longer than 64KB. Startup times, nev-
ertheless, are very similar.

5. Conclusions

The characterization of message-passing communication
overhead is an important issue in developing environments.
As Java message-passing is an emerging option in clus-
ter computing, this kind of studies serve as objective and
quantitative guidelines for cluster parallel programming.
We have selected the most well-known Java-based libraries:
mpiJava, CCJ and JMPI. Additionally, we have also ana-
lyzed several MPI C libraries for comparison purposes. The

design of our own message-passing micro-benchmark suite
allowed us to obtain more accurate models. From the eval-
uation of the experimental results using different networks,
we can conclude that mpiJava presents a good performance,
very similar to that of the corresponding native MPI li-
brary, although mpiJava is not a truly portable library. Pure
Java implementations show poorer performance, mainly for
short messages due to the RMI overhead. This performance
is almost independent of the underlying network, due to the
overhead added by IP emulation, which does not take ad-
vantage of Myrinet or SCI bandwidth (eg, the startup time
of IP over GM is four times slower than on GM, and band-
width is 32% smaller). Among the research efforts under-
taken to optimize RMI calls, KaRMI [17] deserves to be
mentioned. The KaRMI library can operate both over IP
(for Ethernet networks) and GM (forMyrinet), and achieves
significant latency reductions. The implementation of pure
Java message-passing libraries using KaRMI would sub-
stantially improve performance, mainly startup times. An-
other possible optimization is to compile Java programs
to native code, thus achieving performances comparable to
C/C++ codes; but in this case Java’s portability is lost. A
straightforward option would be to use GCJ, the GNU com-
piler for Java, but currently it does not support RMI. An al-
ternative approach was followed by CCJ developers: in or-
der to improve performance, they use Manta [10], a Java to



native code compiler with an optimized RMI protocol. It is
possible to install Manta onMyrinet, but it uses several soft-
ware layers that require considerable configuration efforts.
There is still a long way for pure Java message-passing

libraries to efficiently exploit low latency networks. Re-
search efforts should concentrate on this issue to consolidate
and enhance the use of pure Java message-passing codes.
Middleware approaches that increase RMI performance, as
well as the optimization of the communication pattern de-
sign for each primitive are necessary to reduce the perfor-
mance gap between Java wrappers and pure Java libraries.
The gap is even wider for SCI networks where far less re-
search has been done, and thus the optimization of Java
message-passing performance on SCI clusters is the goal
of our future work.
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