
Computer Communications 31 (2008) 4049–4059
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Java Fast Sockets: Enabling high-speed Java communications on high
performance clusters

Guillermo L. Taboada *, Juan Touriño, Ramón Doallo
Computer Architecture Group, Department of Electronics and Systems, University of A Coruña, 15071 A Coruña, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 November 2007
Received in revised form 12 August 2008
Accepted 13 August 2008
Available online 28 August 2008

Keywords:
Java sockets
High performance cluster
Scalable coherent interface
Myrinet
Gigabit Ethernet
0140-3664/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.comcom.2008.08.012

* Corresponding author. Tel.: +34 981167000; fax:
E-mail addresses: taboada@udc.es (G.L. Taboada

doallo@udc.es (R. Doallo).
This paper presents Java Fast Sockets (JFS), an optimized Java socket implementation on clusters for high
performance computing. Current socket libraries do not efficiently support high-speed cluster intercon-
nects and impose substantial communication overhead. JFS overcomes these performance constraints by:
(1) enabling high-speed communication on cluster networks such as Scalable Coherent Interface (SCI),
Myrinet and Gigabit Ethernet; (2) avoiding the need of primitive data type array serialization; (3) reduc-
ing buffering and unnecessary copies; and (4) reimplementing the protocol for boosting shared memory
(intra-node) communication. Its interoperability and user and application transparency allow for imme-
diate applicability on a wide range of parallel and distributed target applications. A performance evalu-
ation conducted on a dual-core cluster has shown experimental evidence of throughput increase on SCI,
Myrinet, Gigabit Ethernet and shared memory communication. It has also been analyzed the impact of
this improvement on the overall application performance of representative parallel codes.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Several appealing features have made Java particularly attractive
for many computing environments, becoming a widespread option.
The benefits are many: platform independence, portability, higher
programming productivity typical of object-oriented languages,
widely spread knowledge and better integration into existing appli-
cations. Nevertheless, there are environments where more tradi-
tional languages have predominance and Java is still an emerging
option, usually where performance is a critical issue. Although
continuous advances in JIT (Just In Time) compilers, Java Virtual
Machines (JVMs) and runtime library optimizations have brought
Java performance close to natively compiled languages (C/C++/For-
tran), this is usually restricted to sequential applications. Parallel
and distributed Java applications usually suffer from inefficient
communication middleware, most of them based on protocols with
high communication overhead such as Java Remote Method Invoca-
tion (RMI). The emergence of multicore architectures heightens the
need of languages with out-of-the-box multithreading and concur-
rency support, like Java. Furthermore, efficient communication
middleware is also needed. Regarding current computing
platforms, clusters, especially with high-speed networks, are the
choice of both industry and academia as they deliver outstanding
throughput at a reasonable price/performance ratio. In this context,
ll rights reserved.

+34 981167160.
), juan@udc.es (J. Touriño),
the trend is to move to multicore clusters with high-speed intercon-
nects. The adoption of Java as a mainstream language on these
systems depends on the availability of efficient communication
middleware in order to benefit from its appealing features at a
reasonable overhead.

Our goal is to provide parallel and distributed Java applications
with an efficient socket implementation, Java Fast Sockets (JFS), for
high performance computing on clusters with high-speed networks.
Several projects have previously attempted to increase Java commu-
nication performance, especially on high-speed cluster networks,
but they lack desirable features as will be discussed in Section 2.
JFS optimizes the JVM socket protocol reducing communication
overhead, especially for shared memory transfers, as will be
presented in Section 3. It also provides high-speed cluster intercon-
nects with efficient Java communication support and allows for
immediate throughput increase thanks to its user and application
transparency as will be shown in Section 4. Section 5 presents the
performance evaluation conducted on a dual-core cluster with SCI,
Myrinet and Gigabit Ethernet where JFS has shown significant
throughput improvement. Its impact on the overall application
performance has also been analyzed on representative parallel
applications, as will be discussed in Section 6. The paper concludes
in Section 7 with a summary of the main results and contributions.
2. Related work

Efficient communication middleware is key to deliver scalable
application performance. Although most clusters have high-speed

mailto:taboada@udc.es
mailto:juan@udc.es
mailto:doallo@udc.es
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

4050 G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059
networks to boost communication performance, Java cannot take
advantage of them as shown in [1] because it has to resort to inef-
ficient TCP/IP emulations for full networking support. These emu-
lation libraries present high start-up latency (the 0-byte message
latency), low bandwidth and high CPU load as shown in [2]. The
main reason behind this poor throughput is that the IP protocol
was designed to cope with low speed, unreliable and prone to fail-
ure links in WAN environments, whereas current cluster networks
are high-speed, hardware reliable and non-prone to failure in LAN
environments. Examples of IP emulations are IPoMX and IPoGM [3]
on top of the Myrinet low-level libraries MX (Myrinet eXpress) and
GM, LANE driver [4] over Giganet, IP over Infiniband (IPoIB) [5],
and ScaIP [6] and SCIP [7] on SCI.

A direct implementation of native sockets on top of low-level
communication libraries can avoid the TCP/IP overhead, and thus
increases performance. Representative examples are next pre-
sented. FastSockets [8] is a socket implementation on top of Active-
Messages, a light-weight protocol with high-speed network access.
SOVIA [4] has been implemented on VIA (Virtual Interface Archi-
tecture); and Sockets over Gigabit Ethernet [9] and GAMMAsockets
[10] have been developed for Gigabit Ethernet. The Socket Direct
Protocol (SDP) over Infiniband [11] is the representative socket li-
brary of the Offload Sockets Framework (OSF). Sockets-MX and
Sockets-GM [3] are the developments on Myrinet, where MX is in-
tended to supersede GM thanks to a more efficient protocol imple-
mentation. The high performance native sockets library on SCI is
SCI Sockets [12]. However, from these implementations only SDP,
Sockets-MX/GM and SCI Sockets are currently available. The Win-
dows Sockets Direct components for Windows platforms provide
access to certain high-speed networks. A related project is Xen-
Socket [13], an optimized socket library restricted to Xen virtual
machine intra-node communication that replaces TCP/IP by shared
memory transfers.

However, the previous socket libraries usually implement a
subset of socket functionality on top of low-level libraries, resort-
ing to the system socket library for unimplemented functions.
Thus, some applications such as kernel-level network services
and Java codes can request features not present in the underlying
libraries and thus failover to system sockets. In order to provide
Java with full and more efficient support on high-speed networks
several approaches have been followed: (1) VIA-based projects,
(2) RMI optimizations, (3) Java Distributed Shared Memory
(DSM) middleware on clusters and (4) low-level libraries on
high-speed networks.

Javia [14] and Jaguar [15] provide access to high-speed clus-
ter interconnects through VIA, communication library imple-
mented on Giganet, Myrinet, Gigabit Ethernet and SCI [16],
among others. More specifically Javia reduces data copying
using native buffers, and Jaguar acts as a replacement of the
Java Native Interface (JNI). Their main drawbacks are the use
of particular APIs, the need of modified Java compilers and
the lack of non-VIA communication support. Additionally Javia
exposes programmers to buffer management and uses a specific
garbage collector.

Representative works about RMI optimization are Manta [17],
a Java to native code compiler with a fast RMI protocol, and
KaRMI [18], that improves RMI through a more efficient object
serialization that reduces protocol latency. Serialization is the
process of transforming objects in byte series, in this case to
be sent across the network. However, the use of specific high-le-
vel solutions with substantial protocol overhead and focused on
Myrinet has restricted the applicability of these projects. In fact,
their start-up latency is from several times up to an order of
magnitude larger than socket latencies. Therefore, current Java
communication middleware such as MPJ Express [19] and MPJ/
Ibis [20], two Message-Passing in Java (MPJ) libraries use sockets
(Java NIO and Ibis sockets, respectively) instead of RMI, due to
their lower overhead. In this case, the higher programming effort
required by the lower-level API allows for higher throughput,
key in communication middleware for high performance
computing.

Java DSM projects worth mentioning are CoJVM [21], JESSICA2
[22] and JavaSplit [23]. As these are socket-based projects, they
benefit from socket optimizations, especially in shared memory
communication [24]. However, they share unsuitable characteris-
tics such as the use of modified JVMs, the need of source code mod-
ification and limited interoperability.

Other approaches are low-level Java libraries restricted to spe-
cific networks. For instance, Jdib [25] accesses Mellanox Verbs
Interface (VAPI) on Infiniband through a low-level API which di-
rectly exploits RDMA and communication queues. Thus, this li-
brary achieves almost native performance on Infiniband.

This paper presents JFS, an efficient Java socket library for mul-
ticore clusters with high-speed networks. By optimizing the widely
used socket API, parallel and distributed Java applications based on
it improve performance transparently. A previous project NBIO
[26] has led to introduce significant non-blocking features in Java
NIO sockets which are key to increase scalability in server applica-
tions. Nevertheless, NBIO does not provide high-speed network
support nor high performance computing tailoring. Ibis sockets
partly solve these issues adding Myrinet support and being the
base of the Ibis framework [27], a pure Java (without native code)
optimized grid and cluster middleware. However, their implemen-
tation on top of JVM sockets limits their performance increase to
serialization improvements.

A preliminary Java socket implementation for SCI and Gigabit
Ethernet has been presented in previous works [28] [29], but cur-
rent JFS implementation shows major improvements: (1) adds
Myrinet support, (2) optimizes Java I/O sockets instead of NIO
sockets in order to extend its applicability, (3) avoids the need of
primitive data type array serialization, (4) reduces even more buf-
fering and unnecessary copies and (5) adds an optimized shared
memory protocol. The performance evaluation presented in Sec-
tions 5 and 6 shows the significant throughput improvement ob-
tained by the current JFS implementation on SCI, Myrinet,
Gigabit Ethernet and especially on shared memory communica-
tion, and on the overall application performance of representative
parallel codes.
3. Efficient Java socket implementation

The development of an optimized Java socket library poses sev-
eral challenges such as serialization overhead reduction and proto-
col performance increase, especially through a more efficient data
transfer implementation. JFS has contributed to these goals by: (1)
avoiding primitive data type array serialization (see Section 3.1);
(2) reducing buffering and unnecessary copies in the protocol
(see Section 3.2); and (3) providing shared memory communica-
tion with an optimized transport protocol as will be shown in Sec-
tion 3.3.

3.1. Serialization overhead reduction

Serialization imposes severe performance penalties as this pro-
cess involves the extraction of the byte values from the data to be
sent. An example of this is shown in Listing 1, where java.io.-

Bits.putInt() writes an int val to the stream b at the position
off. As Java socket restriction of sending only byte arrays does
not hold for native sockets, JFS defines native methods (see Listing
2) to transfer primitive data type arrays directly without
serialization.

G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059 4051
Listing 1. Example of a costly serialization operation of an int
value
static void putInt(byte[] b, int off, int val) {

b[off+3]=(byte) (val � 0);

b[off+2]=(byte) (val � 8);

b[off+1]=(byte) (val � 16);

b[off+0]=(byte) (val � 24);

}

Listing 2. JFS extended API for direct communication of primi-
tive data type arrays
jfs.net.SocketOutputStream.write(int buf[],
int offset, int length);

jfs.net.SocketOutputStream.write(double buf[],

int offset, int length);

jfs.net.SocketOutputStream.write(float buf[],

int offset, int length);

. . .

jfs.net.SocketInputStream.read(int buf[],

int offset, int length);
. . .
3.2. Socket protocol optimization

Sun JVM socket operation has been analyzed. Fig. 1 shows its
diagram representing the data structures used and the path fol-
lowed by socket messages. It has been selected a primitive data
type array transfer for representativeness and illustrative pur-
poses. First, ObjectOutputStream, the class used to serialize ob-
jects, writes sdata to a block data buffer (blockdata). As
recommended, serialized data is buffered in order to reduce the
number of accesses to native sockets. Then, the socket library uses
the JNI function GetByteArrayRegion(byte[] buf) to copy the
buffered data to jvmsock_buf, a native buffer that is dynamically
allocated for messages longer than 2 KB (configurable size). The
native socket library and its buffer nativesock_buf are involved
in the next copy. Then, data are transferred through the network
thanks to the network driver. The receiving side operates in reverse
order, and thus the whole process involves nine steps: a serializa-
tion, three copies, a network transfer, other three copies and a des-
erialization. Potential optimizations detected in this analysis in
order to improve performance are the reduction in the number
of copies and the decrease of the serialization overhead.

These optimizations have been included in JFS as shown in
Fig. 2. The function GetPrimitiveArrayCritical(hprimitive
data typei {s/r} data[]) allows native code to obtain through
JNI a direct pointer to the Java array in order to avoid serialization.
Thus, a one-copy protocol can be implemented as only one copy is
needed to transfer sdata to the native socket library. However,
data can be transferred with a zero-copy protocol without involv-
ing the CPU on RDMA-capable high-speed cluster interconnects
(such as SCI, Myrinet and Infiniband). This zero-copy protocol ob-
tains higher bandwidths and lower CPU loads than the one-copy
protocol, although RDMA imposes a higher start-up latency. There-
fore, one copy is used only for short messages (size below a config-
urable threshold). A related issue is the receiving strategy,
obtaining polling lower start-up latency but higher CPU load than
blocking. Thus, polling is preferred only for short messages. These
protocols and strategies are handled by JFS. The whole optimized
process involves up to two copies and a network communication
in the worst case. Furthermore, it has been detected a potential
optimization for shared memory communication, presented in
the following subsection.

3.3. Efficient shared memory socket communication

The emergence of multicore architectures has increased the use
of shared memory socket communication, the most efficient way
to exchange messages between two Java applications running on
the same machine. However, JVM sockets handle intra-node trans-
fers as TCP/IP transmissions. Some optimizations exist, like using a
larger Maximum Transfer Unit (MTU) size, usually an order of
magnitude higher, in order to reduce IP packet fragmentation,
but TCP/IP overhead is still the throughput bottleneck. In order
to reduce this performance penalty JFS has implemented shared
memory transfers resorting to UNIX sockets (or similar light-
weight non-TCP/IP sockets when available) and direct memory
transfers, and therefore avoiding TCP/IP (see Fig. 2). Thus, JFS first
sends the sdata direct pointer (arr_sref) to the receiver, which
next moves sdata content into rdata array through a native copy
(memcpy or analogous). Finally, the sender polls for the copy end
notification, a control message or a flag setting by the receiver.
JFS greatly benefits from this optimization achieving memory-to-
memory bandwidth, although for short messages the start-up la-
tency of this three-step protocol can be enhanced by sending the
data in only one transaction. This efficient shared memory support,
together with optimized inter-node transfers, allows socket-based
parallel applications to achieve good performance on multicore
clusters. This is due to the combination of the scalability provided
by the distributed memory paradigm and the high performance of
the shared memory communication.
4. High performance Java communication on clusters

JFS provides efficient socket communication through an opti-
mized protocol. However, the usefulness of these improvements
depends on the range of potential target systems and applications.
Thus, in order to extend this range, JFS adds efficient support for
high-speed cluster interconnects (next presented in Section 4.1).
JFS also provides application transparency, in order to be used by
Java applications without source code modification, as will be
shown in Section 4.2.

4.1. Efficient Java communication on high-speed cluster interconnects

JFS includes a more efficient high-speed cluster network sup-
port than the use of IP emulations. Thus, JFS relies on native socket
operation that does not experience problems with the JVM. An
example is the avoidance of IPv6, preferred by JVM sockets and
usually not implemented for high-speed networks. This high-speed
interconnect support is implemented specifically for each network
through JNI, which provides native socket throughput to Java. JNI is
also used by JVM sockets, although their generic access to the net-
work layer is inefficient for high-speed networks as they do not
take advantage of the underlying native libraries.

Fig. 3 shows a schema of the components involved in socket
operation on high-speed networks. From bottom to top, the first
layer is the Network Interface Card (NIC) for each high-speed net-
work, then appears the native middleware (two layers), next the
Java middleware (two layers), and finally the applications. Java

<primitive data type> rdata[]

ReceiverApplicationSenderApplication

<primitive data type> sdata[]

use
Y

Y

Communication

Shared Memory Transfer

N

sock_buf to
Copy *native−

*arr_rref

JAVA VIRTUAL MACHINE

use

JAVA VIRTUAL MACHINE

JFS JFS

Native Socket Library Native Socket Library

char *nativesock_buf(configurable size)char *nativesock_buf (configurable size)

Network

 local address?
 source is

Obtain array reference (arr_rref=
GetPrimitiveArrayCritical(rdata))

N

 is local address?
 destination

Obtain array reference (arr_sref=
GetPrimitiveArrayCritical(sdata))

 1

Y

Y

 2’

RDMA reception
into arr_rref

Send arr_sref

*nativesock_buf
Copy *arr_sref to

RDMA *arr_sref

 3

N

(optimization)

 4
 2

YY R
ec

ei
ve

 s
da

ta
 in

to
 r

da
ta

Se
nd

 s
da

ta

 4’ transfer end

(move sdata into rdata)
Copy *arr_sref to *arr_rref

 3’

Shared memory

NN

(optimization)

zero−copy

protocol?
protocol?zero−copy

N

short message?short message?

Fig. 2. JFS optimized protocol.

<primitive data type> rdata[]

BufferedInputStream

byte buf[8KB]byte buf[8KB]

BufferedOutputStream

<primitive data type> sdata[]

ReceiverApplication

BlockDataInputStream

byte blockdata[1KB]

JAVA VIRTUAL MACHINEJAVA VIRTUAL MACHINE

SenderApplication

Java Socket Library

Y

jvmsock_buf=malloc(size)

char *nativesock_buf (configurable size) char *nativesock_buf (configurable size)

(copy buf[])
Unbuffering data

(SetByteArrayRegion(buf))

 5

Copy *jvmsock_buf to buf[]

char *jvmsock_buf (up to 64KB)

N

Y

jvmsock_buf=malloc(size)

 7

 8

Native Socket Library Native Socket Library

jvmsock_buf=2KBstaticbuffer

 6 Copy *nativesock_buf to *jvmsock_buf

Network Communication

BlockDataOutputStream
(ObjectOutputStream.write(sdata))

 1 Serialize sdata[]

N

Copy *jvmsock_buf to *nativesock_buf 4

char *jvmsock_buf (up to 64KB)

jvmsock_buf=2KBstaticbuffer
to *jvmsock_buf

(GetByteArrayRegion(buf))

 3

 2 Buffering data
(copy blockdata[])

Java Socket Library

MAX_BUFFER_LEN
(default 2KB)

MAX_BUFFER_LEN

byte blockdata[1KB]

 9 Deserialize blockdata[]
(ObjectInputStream.read(rdata))

message size >

(default 2KB)

message size >

Copy buf[]

Fig. 1. Sun JVM socket operation.

4052 G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059
applications access Java sockets usually through Java communica-
tion middleware, e.g., MPJ libraries, typically based either on RMI
or directly on sockets. Regarding Gigabit Ethernet, the Java support
is direct on native sockets. The SCI low-level drivers are IRM (Inter-
connect Resource Manager) and SISCI (Software Infrastructure for
SCI), whereas SCILib is a communication protocol on top of SISCI
that offers unidirectional message queues. On SCI JFS resorts to
SCI Sockets and SCILib, higher level solutions than IRM and SISCI

Gigabit Ethernet Driver

Gigabit Ethernet NIC

biLICS / stekcoS ICSstekcoS PI/PCT

SCI Drivers: IRM / SISCI

(IP Emulation)
IPoMX

Myrinet NICSCI NIC

Myrinet Driver: MX

JVM Sockets
JVM Sockets JVM Sockets

(IP Emulation)
SCIP

 Java Applications Java Applications Java Applications

Sockets−MX

SFJSFJSFJ

(RMI−based, Socket−based, MPJ) (RMI−based, Socket−based, MPJ) (RMI−based, Socket−based, MPJ)
Java Communication Middleware Java Communication Middleware Java Communication Middleware

Fig. 3. Java sockets on high-speed networks: communication middleware overview.

G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059 4053
but still efficient libraries. On Myrinet JFS relies on Sockets-MX for
providing Java applications with efficient communication. JFS also
provides JVM sockets with high-speed network support in order to
avoid IP emulations. Furthermore, JFS aims to transparently obtain
the highest performance on systems with several communication
channels through a failover approach. Thus, JFS first tries to use
the option with the highest performance. If this fails, it follows,
in descending order of performance, with the remaining communi-
cation channels that are available.

4.2. JFS application transparency

By implementing the socket API, a wide range of parallel and dis-
tributed target applications can take advantage transparently of the
efficient JFS communication protocol. As Java has a built-in proce-
dure (setting factories) to swap the default socket library, it is easy
to replace the JVM sockets by JFS. However, the JVM socket design
has to be followed in order to implement a swappable socket li-
brary. Fig. 4 presents JFS core classes: PlainSocketImpl is the
Sun JVM socket implementation, FastSocketImplFactory cre-
ates custom JFS sockets, and the I/O stream classes, whose package
is java.net for Sun JVM sockets and jfs.net for JFS. The stream
classes are in charge of managing the transport protocol. The JFS
setting as the default socket library is shown in Listing 3. From then
on the application will use this implementation. As this procedure
requires source code modification, Java’s reflection has been used
in order to obtain a transparent solution. Thus, a small application
launcher swaps its default socket factory and then invokes the main
method of the target class (see Listing 4). The target application will
use JFS transparently even without source code availability.

Listing 3. Swapping Java socket implementation
SocketImplFactory factory =
new jfs.net.FastSocketImplFactory();

Socket.setSocketImplFactory(factory);

ServerSocket.setSocketFactory(factory);
java.net.PlainS
SocketInputStream

SocketOutputStream

java.net.Soc

Fig. 4. JFS core cl
Listing 4. JFS launcher application code
ock

ket

ass
[Swap Java socket implementation]

Class cl=Class.forName(className);

Method method=cl.getMethod("main",

parameterTypes);

method.invoke(null, parameters);

JFS extends the socket API by adding methods that avoid serial-
ization and eliminate unnecessary copies when sending portions of
primitive data type arrays. Listing 5 presents an example of this
feature. As JVM sockets can not send array portions (except for
parts of byte arrays) a new array must be created to store the data
to be serialized and then sent. This costly process is repeated at the
receiver side. Listing 5 shows the handling of this communication
scenario in a portable way in order to use the efficient JFS methods
when they are available. This feature is of special interest in com-
munication middleware such as Java message-passing libraries and
RMI, yielding significant benefits to end applications without mod-
ifying their source code.

Parallel and distributed Java applications and, especially,
communication middleware can benefit transparently from the
higher performance of JFS on high-speed networks and shared
memory communication. This can be done without losing porta-
bility, using particular JFS features such as serialization avoid-
ance only when this socket library is available. Moreover, this
solution is interoperable as it can communicate with JVM sock-
ets, although relying only on features shared by both implemen-
tations. Thus, the buffering and copying reduction could be used,
but not the high-speed network support nor the optimized
shared memory transfers. Next sections evaluate JFS perfor-
mance (Section 5) and its impact on representative applications
(Section 6).
etImpl jfs.net.FastSocketImpl

Impl
jfs.net.FastSocketImplFactory

+ createSocketImpl()

diagram.

4054 G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059
Listing 5. JFS direct send of part of an int array
if (os instanceof jfs.net.SocketOutputStream) {

jfsExtendedAPI = true;

jfsos = (jfs.net.SocketOutputStream) os;

}
oos = new ObjectOutputStream(os);

int int_array[] = new int[20];

[. . .]
// Writing the first ten elements of int_array
if (jfsExtendedAPI)

jfsos.write(int_array,0,10);
else {
int[] ints = (int[])Array.newIn-

stance(int.class, 10);

System.arraycopy(int_array, 0, ints, 0, 10);
oos.writeUnshared(ints);

}

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
an

dw
id

th
 [

M
bp

s]

Message size [bytes]

Java Array Communication (SCI)
B] Sun JVM sockets (SCIP)
OBOS(I]) Sun JVM sockets (SCIP)
OBOS(D]) Sun JVM sockets (SCIP)
OBOS(I]) Sun JVM sockets (JFS)
OBOS(D]) Sun JVM sockets (JFS)
B],I],D] JFS
SCI Sockets

Fig. 6. SCI bandwidth.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

204810245122561286432168

L
at

en
cy

 [
µs

]

Message size [bytes]

Java Array Communication (SCI)
B] Sun JVM sockets(SCIP)
OBOS(I]) Sun JVM sockets(SCIP)
OBOS(D]) Sun JVM sockets(SCIP)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
SCI Sockets

Fig. 5. SCI latency.
5. JFS Performance evaluation

5.1. Experimental configuration

The testbed consists of a cluster of eight dual-core nodes
(Pentium IV Xeon at 3.2 GHz, 4 GB of memory) interconnected
via SCI, Myrinet and Gigabit Ethernet. The SCI NIC is a D334 card
and the Myrinet NIC is an ‘‘F” Myrinet2000 card (M3F-PCIXF-2
Myrinet-Fiber/PCI-X NIC). Both are plugged into 64 bits
/ 66 MHz PCI slots. The Gigabit Ethernet NIC is an Intel PRO/
1000 using a 3Com 2816-SFP Plus switch. It has also been used
a DGS-1216T Dlink switch for evaluating Gigabit Ethernet Jumbo
Frames performance. The OS is Linux CentOS 4.4 with C compiler
gcc 3.4.6 and Sun JDK 1.5.0_07. This JDK has been selected as it
obtained slightly better performance than IBM JDK 1.5 for the
benchmarks used in Sections 5 and 6. The SCI libraries are SCI
Sockets 3.1.4, DIS 3.1.11 (IRM, SISCI and SCILib) and SCIP 1.2.0,
whereas the Myrinet libraries are MX 1.1.1 and Sockets-MX
1.1.0 (see Fig. 3).

In order to microbenchmark JFS performance, a Java socket
version of NetPIPE [30] has been developed. The results consid-
ered in this section are the half of the round trip time of a
ping-pong test running JIT compiled bytecode. In order to obtain
optimized JIT results, 10,000 warm-up iterations have to be exe-
cuted before the actual measurements. It has been benchmarked
the performance of byte, integer and double arrays, as they are
data structures frequently used in parallel and distributed appli-
cations. For clarity purposes it has been used the JNI array nota-
tion. Thus, B] denotes a byte array, I] an int array and D] a
double array. When using serialization, it has been pointed out
the procedure through the use of the keys OOS and OBOS. OOS
indicates a java.net.ObjectOutputStream object wrapping a
SocketOutputStream object, whereas OBOS is a
java.net.ObjectOutputStream object wrapping a Buffered-

OutputStream around the supplied SocketOutputStream.
OOS writes directly to the stream the serialized byte series in or-
der to reduce the start-up latency, whereas OBOS buffers the seri-
alized data in a byte array (by default an 8 KB buffer) in order to
minimize the stream accesses and thus increase bandwidth. As
OOS improves performance only for short messages, and slightly
as can be seen in Figs. 9 and 10, its results have been omitted
in the remaining figures for clarity purposes.
5.2. JFS Microbenchmarking on high-speed networks

Figs. 5–10 show the latencies and bandwidths of native and Java
socket libraries as a function of the message length, for byte, inte-
ger and double arrays on SCI, Myrinet and Gigabit Ethernet. The na-
tive libraries considered are SCI Sockets, Sockets-MX and the native
TCP/IP sockets, whereas the Java sockets libraries are Sun JVM
sockets and JFS. The latency graphs (at the top) serve to compare
short message performance, whereas the bandwidth graphs (bot-
tom) are useful to compare long message performance.

Figs. 5 and 6 present latency and bandwidth results on SCI. The
two available transport layers with Java support, the IP emulation
SCIP and JFS, obtain significantly different results. Thus, JFS start-
up latency is 6 ls compared to 36–48 ls for SCIP, showing an over-
head reduction of up to 88%. Regarding bandwidth, JFS achieves up
to 2366 Mbps whereas SCIP results are below 450 Mbps, up to
1305% performance increase for JFS (B] JFS vs. OBOS(D]) for a
2 MB message). B], I] and D] JFS results are quite similar among
them as they use the same protocol, a direct send avoiding serial-
ization. Thus, for clarity purposes, only B] values are presented as
the representative results under the label B],I],D] JFS. As JFS is
implemented on top of SCI Sockets (see Fig. 3) it can be estimated
its processing overhead (the difference between JFS and SCI Sock-
ets performance) in around 1-2 ls for short messages, and around
a 5% bandwidth penalty for long messages. Therefore, JFS obtains
quite similar results to SCI Sockets, the high performance native

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
an

dw
id

th
 [

M
bp

s]

Message size [bytes]

Java Array Communication (Myrinet)

B] Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(IPoMX)
OBOS(D]) Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
Sockets-MX

Fig. 8. Myrinet bandwidth.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

204810245122561286432168

L
at

en
cy

 [
µs

]

Message size [bytes]

 Java Array Communication (Gigabit Ethernet)
B] Sun JVM sockets
OOS(I]) Sun JVM sockets
OOS(D]) Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS
native TCP/IP sockets

Fig. 9. Gigabit Ethernet latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

B
an

dw
id

th
 [

M
bp

s]

Message size [bytes]

Java Array Communication (Gigabit Ethernet)
B] Sun JVM sockets
OOS(I]) Sun JVM sockets
OOS(D]) Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS
native TCP/IP sockets

Fig. 10. Gigabit Ethernet bandwidth.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

204810245122561286432168

L
at

en
cy

 [
µs

]

Message size [bytes]

Java Array Communication (Myrinet)
B] Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(IPoMX)
OBOS(D]) Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
Sockets-MX

Fig. 7. Myrinet latency.

G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059 4055
socket library on SCI. OBOS serialization imposes overheads on
start-up latencies around 6 ls and 12 ls using JFS and SCIP, respec-
tively. OBOS over SCIP bandwidths are quite poor, under 400 Mbps.
Regarding OBOS over JFS results, OBOS(D]) bandwidth is close to
JFS (around 90%) thanks to its optimized native implementation.
Sun JVM provides optimized native methods for float and double
array serialization, overcoming the pure Java serialization bottle-
neck at 1200 Mbps for OBOS(I]) over JFS. However, for short mes-
sages OBOS(I]) obtains better performance than OBOS(D]).

Figs. 7 and 8 present latency and bandwidth results on Myrinet.
The best Java sockets results have been obtained using JFS as trans-
port layer, although using the IP emulation IPoMX the differences
narrow as the message size increases, showing similar long mes-
sage bandwidth for byte arrays. The reason of this behavior is the
higher start-up latency of IPoMX (22 ls) compared to JFS (7 ls,
68% less than IPoMX), and that the Myrinet NIC is the communica-
tion bottleneck limiting the maximum transfer rate to 2 Gbps. In
fact, the experimentally measured JFS and IPoMX bandwidths
can only rise up to 85% of this value (1700 Mbps). JFS Myrinet sup-
port is based on Sockets-MX rather than Sockets-GM for its better
performance. This has been experimentally assessed on our test-
bed, where JFS resorting to Sockets-GM obtained higher start-up
latency (23 ls) and lower bandwidths than using Sockets-MX.
The presented Sockets-MX results show that JFS overhead on Myr-
inet is quite reduced, obtaining JFS almost native performance.
OBOS serialization imposes an overhead on start-up latency of
around 7–10 ls. Regarding bandwidth, OBOS over JFS performs
better than using IPoMX. The native serialization method in
OBOS(D]) improves the performance of the pure serialization
method used in OBOS(I]) only over JFS, but not over IPoMX. How-
ever, B],I],D] JFS clearly outperforms OBOS results with a perfor-
mance increase of up to 412%.

Figs. 9 and 10 present latency and bandwidth results on Gigabit
Ethernet. There is not a significant difference in byte array perfor-
mance between socket implementations, although JFS slightly out-
performs Sun JVM sockets for medium-sized messages. However,
JFS performance improvement of sending int and double arrays
(I] and D]) is up to 119%, result obtained for a 2 MB message,
thanks to avoid serialization. It can be seen that serialization im-
poses an overhead of 4–7 ls in start-up latency and that the native
serialization used in OBOS(D]) does not increase performance sig-
nificantly. In fact, the data link and network layers are the perfor-
mance bottlenecks as they impose high start-up latencies, around
50 ls, and low bandwidths, below the 1 Gbps maximum network
transfer rate, severely limiting throughput improvement. This
analysis is confirmed by the presented native TCP/IP sockets re-
sults, which show almost the same performance as Java sockets
due to the high impact of the communication bottlenecks on the
overall performance. Moreover, socket latencies are clustered
around 55 and 120 ls (see Fig. 9) caused by the operation of the
underlying layers. The effect of these clustered latencies can also
be observed for JFS in Fig. 10 where the bandwidth for [1–16 KB]
messages presents a saw-teeth shape. Looking for potential

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

204810245122561286432168

L
at

en
cy

 [
µs

]

Message size [bytes]

Java Array Communication (Shared Memory)
B] Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS (TCP sockets)
B],I],D] JFS (UNIX sockets)
UNIX sockets

Fig. 11. Latency of shared memory communication.

 15

 20

 25

 30

 35

 40

nd
w

id
th

 [
G

bp
s]

Java Array Communication (Shared Memory)
B] Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS (TCP sockets)
B],I],D] JFS (UNIX sockets)
UNIX sockets

4056 G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059
improvements in order to partly overcome these limitations it has
been evaluated the use of Gigabit Ethernet Jumbo Frames.

5.3. JFS on Gigabit Ethernet Jumbo Frames

The Ethernet default MTU of 1500 bytes has been maintained
for backward compatibility in order to handle any communication
between 10/100/1000 Mbps devices without any Ethernet frame
fragmentation or reassembly. Nevertheless, this is a rather small
size that increases CPU load due to handling numerous frames
when sending long messages. A larger MTU reduces CPU overhead
and therefore increases long message bandwidth, although for
medium-sized messages waiting for filling larger Ethernet frames
increases latency. Jumbo Frames is the technology that extends
MTU size up to 9000 bytes.

It has been evaluated the use of JFS with Jumbo Frames for MTU
sizes of 3000, 4500, 6000 and 9000 bytes. Jumbo Frames increase
slightly JFS long message performance. For a 2 MB message the
bandwidth rises from 892 Mbps, with the default MTU, up to 932
Mbps using an MTU of 9000 bytes. This improved result is 93% of
the maximum theoretical bandwidth, 4% more than using the de-
fault MTU. Regarding medium-sized messages, the use of Jumbo
Frames increases JFS latency in the range [1.5–256 KB] up to 90%
(this peak latency increase was obtained for a 6 KB message with
an MTU of 9000 bytes). This latency increase is especially high
for [1.5–16 KB] messages, while for larger messages the negative
impact of Jumbo Frames is reduced as the message size increases.

An additional characteristic of the use of Jumbo Frames is the
CPU communication processing offloading. Table 1 presents the
CPU overhead of two Java socket implementations in terms of per-
centage of CPU load (using a Xeon 3.2 GHz) devoted to socket com-
munication processing. It has been used the NetPIPE benchmark
sending from 9 KB up to 2 MB messages (range with Ethernet
frame fragmentation) for measuring these values. It can be seen
that Jumbo Frames reduce significantly CPU overhead. Neverthe-
less, as Jumbo Frames trade off medium-sized message perfor-
mance for CPU offloading, this is not an especially useful feature.

As main conclusion, the use of Jumbo Frames is recommended
for applications sending only long messages. Regarding the CPU
offloading, Jumbo Frames contribution is not especially important
as JFS already reduces CPU load without using Jumbo Frames
(MTU = 1500), from 30% to 12% (60% reduction) as can be seen in
Table 1, and therefore without trading off performance for CPU
offloading.

5.4. Java shared memory communication

Fig. 11 presents JFS shared memory protocol performance for
short messages (see Section 3.3). Although the default underlying
library for this protocol is UNIX sockets, JFS performance using
TCP sockets is shown for comparison purposes. JFS start-up latency
is 8 ls, half of Sun JVM sockets start-up. However, this value is lar-
ger than the 6 and 7 ls JFS start-up latencies on SCI and Myrinet,
respectively (see Section 5.2), as the underlying native library,
UNIX sockets, imposes higher start-up overhead than the native
sockets on these high-speed networks. In a multicore scenario it
is key to reduce the high start-up latency of shared memory native
communication.
Table 1
CPU load percentage of sockets processing using Gigabit Ethernet Jumbo Frames

MTU (bytes)

1500 3000 4500 6000 9000

Socket Sun JVM 30% 25% 15% 16% 5%
implementation JFS 12% 10% 4% 4% 3%
Fig. 12 shows the significant bandwidth increase of JFS commu-
nication due to the use of the optimized shared memory protocol
for messages longer than 16 KB. This protocol increases the peak
bandwidth from 9 Gbps, using JFS without this optimized protocol,
up to 34 and 41 Gbps for JFS using TCP and UNIX sockets, respec-
tively. These peak bandwidths are obtained for 256–512 KB mes-
sage sizes as memory-to-memory transfers also obtain their peak
bandwidths for this range. The performance of the optimized
shared memory protocol has also been measured for the native
UNIX sockets library, showing that JFS also obtains almost native
performance on shared memory. Sun JVM socket performance is
under 1.5 Gbps for int and double arrays and under 6 Gbps for byte
arrays. The observed bandwidth increase is up to 4411%, peak va-
lue obtained by comparing a 512 KB D] message sent with JFS

(UNIX sockets) versus sent with OBOS(D]).

6. Performance analysis of parallel applications with JFS

JFS microbenchmarking has shown significant performance
improvement, but its usefulness depends on its impact on the
overall application performance. The range of JFS applicability cov-
ers socket-based MPJ applications and MPJ libraries such as MPJ
Express [19] and MPJ/Ibis [20], RMI applications and RMI-based
middleware like ProActive [31] [32], a middleware for parallel,
multithreaded and distributed computing focused on Grid applica-
tions. In short, any sockets-based parallel or distributed Java appli-
cation running on a cluster can use JFS. These applications can
 0

 5

 10

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

Message size [bytes]

Fig. 12. Bandwidth of shared memory communication.

1

Number of Processors

0

2

4

6

8

10

12

R
un

ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

R
un

ti
m

e
(s

ec
on

ds
)

0

1

2

3

4

5

6

Sp
ee

du
p

 MPJ/Ibis
 MPJ Express

 JFS-based MPJ

LUFact Application Kernel (Gigabit Ethernet)

0

1

2

3

4

5

6

Sp
ee

du
p

 MPJ/Ibis
 MPJ Express

 JFS-based MPJ

LUFact Application Kernel (SCI)

16842

1

Number of Processors
16842

Fig. 13. MPJ LUFact performance.

G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059 4057
benefit immediately from JFS thanks to its user and application
transparency. The impact on the overall application performance
has been analyzed in the current section where the following rep-
resentative parallel applications have been selected for evaluation:
(1) two message-passing applications, LUFact and Moldyn, from
the Java Grande Forum Benchmark Suite [33], and (2) two parallel
applications, MG and CG, from the ProActive implementation of
the NAS Parallel Benchmarks (NPB) [34]. Two high-speed networks
have been also selected: Gigabit Ethernet due to its wide deploy-
ment, and SCI as the JFS microbenchmarking has shown the best
performance on this network. In order to isolate the impact of
these networks on performance, only one processor core per node
has been used for running the benchmarks on two, four and eight
processors. Two processor cores per node have been used for
obtaining 16-processor results in order to analyze the behavior of
hybrid high-speed network/shared memory (inter-node/intra-
node) communication. As the trend is to move to multicore clus-
ters with high-speed networks, the performance of this hybrid ap-
proach is of special interest.

6.1. JFS-based message-passing

Two message-passing application kernels, LUFact, a matrix LU
factorization, and Moldyn, a molecular dynamics N-body parallel
simulation, have been selected (the size C benchmark versions)
in order to analyze the performance impact of the use of JFS-based
message-passing middleware. These kernels have been bench-
marked using three MPJ libraries: MPJ/Ibis, MPJ Express and a
JFS-based MPJ, developed specifically for showing the benefits of
JFS-based middleware, especially the serialization avoidance. On
SCI, it has been used JFS instead of JVM sockets over SCIP as under-
lying layer for MPJ/Ibis and MPJ Express (see Fig. 3) in order to
avoid the IP emulation and thus ensure a fair comparison. There-
fore, the three MPJ implementations use the same underlying sock-
et library on SCI and the performance differences are exclusively
due to their implementation. Thus, the benefits of the JFS-based
implementation can be easily noticed.

Fig. 13 shows MPJ LUFact runtimes and speedups. The perfor-
mance differences on two, four and eight processors are explained
exclusively by the communication efficiency of these MPJ libraries
on high-speed networks. However, results on 16 processors com-
bine network communication (inter-node) with shared memory
communication (intra-node). JFS-based MPJ significantly outper-
forms MPJ/Ibis and MPJ Express, especially using 16 processors
and SCI, obtaining a speedup increase of up to 179%. Both MPJ/Ibis
and MPJ Express scale performance only up to eight processors,
decreasing their speedups for 16 processors. Nevertheless, JFS-
based MPJ obtains higher speedups on 16 processors than on eight
processors, thanks to combining efficiently its inter-node and in-
tra-node communication. Fig. 14 shows Moldyn runtimes and
speedups. Moldyn is a more computation-intensive code than LU-
Fact, obtaining almost linear speedups for up to eight processors.
Nevertheless, for 16 processors MPJ Express and MPJ/Ibis scale per-
formance significantly worse than JFS-based MPJ, which outper-
forms these libraries up to 14% and 42% on Gigabit Ethernet and
SCI, respectively. MPJ Express performs better than MPJ/Ibis for
this benchmark, except for 16 processors. However, these differ-
ences are small due to the limited influence of communication
overhead on the overall performance.

This analysis of MPJ libraries performance has also been useful
for evaluating two additional Java sockets libraries: Java NIO and
Ibis sockets (see Section 2). Thus, the differences observed among
MPJ/Ibis, MPJ Express and the JFS-based MPJ are mainly explained
by the socket libraries used in their implementation, Ibis sockets,
Java NIO and JFS, respectively. Java NIO sockets obtain the lowest
performance, as this implementation is more focused on providing
scalability in distributed systems rather than efficient message-
passing communication. Ibis sockets significantly outperform Java
NIO sockets. Moreover, they are a good estimate for JVM sockets
performance, as they show similar results [29]. Finally, JFS clearly
achieves the highest performance, showing its improvements a
significant impact of on the overall MPJ applications performance.

6.2. JFS-based RMI

As shown in a previous work [35], JFS reduces significantly RMI
overhead, up to 10% and 60% for primitive data type arrays on Giga-
bit Ethernet and SCI, respectively, and up to 63% for object commu-
nication, especially sensitive to start-up latency, on SCI. As RMI
imposes a significant performance penalty on the ProActive mid-
dleware [31] [32], JFS has been used for reducing its overhead.
The benefits have been evaluated using two representative commu-
nication-intensive applications, MG and CG, from the ProActive NPB
[34]. MG is a 3D MultiGrid method with a Poisson solver algorithm,
whereas CG solves an unstructured sparse linear system. Fig. 15
shows MG and CG results using SCIP and JFS on SCI. The high mem-
ory requirements of MG have prevented this benchmark from being
run on a single node. The MG speedups have then been calculated
using the runtime on two processors as reference. As can be seen
in Fig. 15, JFS increases speedup up to 24% for MG and up to 157%
for CG. JFS improves transparently the performance of RMI applica-
tions, especially for intra-node communications and on high-speed
networks. Therefore, JFS enables parallel and distributed high-level
programming without compromising performance.

1

Number of Processors

0

100

200

300

400

500

600

700

R
un

ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

Sp
ee

du
p

 MG size C (SCIP)
 MG size C (JFS)
 CG size C (SCIP)
 CG size C (JFS)

Java ProActive NAS Parallel Benchmarks (SCI)

16842

Fig. 15. ProActive NAS parallel benchmarks.

Table 2
JFS performance improvement compared to Sun JVM sockets

SCI Myrinet Gigabit
Ethernet

Shared
memory

JFS start-up
reduction

88% 68% 0% 50%

JFS bandwidth
increase

Up to
1305%

Up to
412%

Up to 119% Up to 4411%

1

Number of Processors

0

50

100

150

200

250

300

350

R
un

ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

Sp
ee

du
p

 MPJ/Ibis
 MPJ Express

 JFS-based MPJ

Moldyn Application (Gigabit Ethernet)

0

50

100

150

200

250

300

350

R
un

ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

Sp
ee

du
p

 MPJ/Ibis
 MPJ Express

 JFS-based MPJ

Moldyn Application (SCI)

16842

1

Number of Processors
16842

Fig. 14. MPJ Moldyn performance.

4058 G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059
7. Conclusions

The steady increase of cluster components performance, espe-
cially for CPUs and high-speed networks, has led to a substantial
improvement of the potential overall performance of clusters. In
order to take full advantage of the hardware resources, applica-
tions have to resort to efficient middleware. Nevertheless, there
is a shortage of optimized Java communication libraries. The use
of IP emulations on high-speed networks incurs in considerable
overhead. Several RMI optimizations for these networks have also
been developed, but their performance is not competitive enough.
Additional Java communication libraries for high-speed networks
lack desirable characteristics such as user and application trans-
parency and the use of widely adopted APIs.

This paper has presented Java Fast Sockets (JFS), an efficient Java
communication middleware for high performance clusters. JFS
implements the widely used socket API for a broad range of target
applications. Furthermore, the use of standard Java compilers and
JVMs, and its interoperability and transparency allow for immedi-
ate performance increase. The main contributions of JFS are: (1)
enabling efficient communication on high performance clusters
interconnected via high-speed networks through a general and
easily portable solution; (2) avoiding the need of primitive data
type array serialization; (3) reducing buffering and unnecessary
copies; and (4) the optimization of shared memory (intra-node)
communication.

A detailed performance evaluation of JFS has been conducted on
a cluster with dual-core nodes for shared memory communication
and SCI, Myrinet and Gigabit Ethernet as high-speed interconnects.
Table 2 summarizes the performance improvement obtained. JFS
has also enhanced the performance of communication-intensive
parallel applications obtaining speedup increases of up to 179%
(LUFact benchmark on 16 processors) compared to the analyzed
socket-based Java message-passing libraries. However, the ob-
served improvements significantly depend on the amount of com-
munication involved in the applications. Additionally, JFS reduces
socket processing CPU load up to 60% compared to Sun JVM
sockets.

Although JFS has significantly improved parallel and distributed
Java applications performance, this library is also intended for mid-
dleware developers in order to implement JFS-based higher level
communication libraries like Java message-passing and RMI
implementations.

Further information, additional documentation and software
downloads of this project are available from the JFS Project web-
page http://jfs.des.udc.es.

Acknowledgement

This work was funded by the Ministry of Education and Science
of Spain under Project TIN2004-07797-C02 and by the Galician
Government (Xunta de Galicia) under Project PGIDIT06PXIB
105228PR.
References

[1] G.L. Taboada, J. Touriño, R. Doallo, Performance analysis of Java message-
passing libraries on Fast Ethernet, Myrinet and SCI Clusters, in: Proceedings of
the 5th IEEE International Conference on Cluster Computing (Cluster’03), Hong
Kong, China, 2003, pp. 118–126.

[2] A. Barak, I. Gilderman, I. Metrik, Performance of the communication layers of
TCP/IP with the Myrinet Gigabit LAN, Computer Communications 22 (11)
(1999) 989–997.

[3] Myricom Inc., GM/MX/Myrinet. Available from: <http://www.myri.com> [Last
visited: August 2008].

http://jfs.des.udc.es
http://www.myri.com

G.L. Taboada et al. / Computer Communications 31 (2008) 4049–4059 4059
[4] J.-S. Kim, K. Kim, S.-I. Jung, SOVIA: a user-level sockets layer over Virtual
Interface Architecture, in: Proceedings of the 3rd IEEE International Conference
on Cluster Computing (Cluster’01), Newport Beach, CA, 2001, pp. 399–408.

[5] IETF Draft, IP over IB. Available from: <http://www.ietf.org/ids.by.wg/
ipoib.html> [Last visited: August 2008].

[6] R.G. Börger, R. Butenuth, H.-U. Hei, IP over SCI, in: Proceedings of the 2nd IEEE
International Conference on Cluster Computing (Cluster’00), Chemnitz,
Germany, 2000, pp. 73–77.

[7] Dolphin Interconnect Solutions Inc., IP over SCI. Dolphin ICS Website. Available
from: <http://www.dolphinics.com/products/software.html> [Last visited:
August 2008].

[8] S.H. Rodrigues, T.E. Anderson, D.E. Culler, High-performance local-area
communication with fast sockets, in: Proceedings of the Winter 1997
USENIX Symposium, Anaheim, CA, 1997, pp. 257–274.

[9] P. Balaji, P. Shivan, P. Wyckoff, D.K. Panda, High performance user level sockets
over Gigabit Ethernet, in: Proceedings of the 4th IEEE International Conference
on Cluster Computing (Cluster’02), Chicago, IL, 2002, pp. 179–186.

[10] S. Petri, L. Schneidenbach, B. Schnor, Architecture and implementation of a
socket interface on top of GAMMA, in: Proceedings of the 28th IEEE
Conference on Local Computer Networks (LCN’03), Bonn, Germany, 2003,
pp. 528–536.

[11] Intel Corporation, Offload Sockets Framework and Sockets Direct Protocol High
Level Design. Available from: <http://infiniband.sourceforge.net/archive/
OSF_SDP_HLD.pdf> [Last visited: August 2008].

[12] F. Seifert, H. Kohmann, SCI SOCKET – A Fast Socket Implementation over SCI.
Dolphin ICS Website, Available from: <http://www.dolphinics.com/userfiles/
files/Whitepaper/sci-socket.pdf> [Last visited: August 2008].

[13] X. Zhang, S. McIntosh, P. Rohatgi, J.L. Griffin, XenSocket: a high-throughput
interdomain transport for VMs, in: Proceedings of the 8th ACM/IFIP/USENIX
International Middleware Conference (Middleware’07), Newport Beach, CA,
2007, pp. 184–203.

[14] C.-C. Chang, T. von Eicken, Javia: a Java interface to the Virtual Interface
Architecture, Concurrency: Practice and Experience 12 (7) (2000) 573–593.

[15] M. Welsh, D.E. Culler, Jaguar: enabling efficient communication and I/O in Java,
Concurrency: Practice and Experience 12 (7) (2000) 519–538.

[16] K. Ghouas, K. Omang, H.O. Bugge, VIA over SCI: consequences of a zero copy
implementation and comparison with VIA over Myrinet, in: Proceedings of the
1st International Workshop on Communication Architecture for Clusters
(CAC’01), San Francisco, CA, 2001, pp. 1632–1639.

[17] J. Maassen, R. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs, R.
Hofman, Efficient Java RMI for parallel programming, ACM Transactions on
Programming Languages and Systems 23 (6) (2001) 747–775.

[18] M. Philippsen, B. Haumacher, C. Nester, More efficient serialization and RMI for
Java, Concurrency: Practice and Experience 12 (7) (2000) 495–518.

[19] M. Baker, B. Carpenter, A. Shafi, MPJ Express: towards thread safe Java HPC, in:
Proceedings of the 8th IEEE International Conference on Cluster Computing
(Cluster’06), Barcelona, Spain, 2006, pp. 1–10.

[20] M. Bornemann, R.V. van Nieuwpoort, T. Kielmann, MPJ/Ibis: a flexible and
efficient message passing platform for Java, in: Proccedings of the 12th
European PVM/MPI Users’ Group Meeting (EuroPVM/MPI’05), Sorrento, Italy,
2005, pp. 217–224.

[21] M. Lobosco, A.F. Silva, O. Loques, C.L. de Amorim, A new distributed Java
Virtual Machine for cluster computing, in: Proceedings of the 9th International
Euro-Par Conference (Euro-Par’03), Klagenfurt, Austria, 2003, pp. 1207–1215.

[22] W. Zhu, C.-L. Wang, F.C.M. Lau, JESSICA2: A distributed Java Virtual Machine with
transparent thread migration support, in: Proceedings of the 4th IEEE
International Conference on Cluster Computing (Cluster’02), Chicago, IL, 2002,
pp. 381–388.

[23] M. Factor, A. Schuster, K. Shagin, JavaSplit: a Runtime for execution of
monolithic Java programs on heterogenous collections of commodity
workstations, in: Proceedings of the 5th IEEE International Conference on
Cluster Computing (Cluster’03), Hong Kong, China, 2003, pp. 110–117.

[24] P.J. Keleher, Update protocols and cluster-based shared memory, Computer
Communications 22 (11) (1999) 1045–1055.

[25] W. Huang, H. Zhang, J. He, J. Han, L. Zhang, Jdib: Java Applications interface to
unshackle the communication capabilities of InfiniBand networks, in:
Proceedings of the 4th IFIP International Conference Network and Parallel
Computing (NPC’07), Dalian, China, 2007, pp. 596–601.

[26] M. Welsh, NBIO: Nonblocking I/O for Java. Available form: <http://
www.eecs.harvard.edu/-~mdw/proj/java-nbio> [Last visited: August 2008].

[27] R.V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T.
Kielmann, H.E. Bal, Ibis: a flexible and efficient Java-based grid programming
environment, Concurrency and Computation: Practice and Experience 17 (7–
8) (2005) 1079–1107.

[28] G.L. Taboada, J. Touriño, R. Doallo, Efficient Java communication protocols on
high-speed cluster interconnects, in: Proceedings of the 31st IEEE Conference
on Local Computer Networks (LCN’06), Tampa, FL, 2006, pp. 264–271.

[29] G.L. Taboada, J. Touriño, R. Doallo, High performance Java sockets for parallel
computing on clusters, in: Proceedings of the 9th International Workshop on
Java and Components for Parallelism, Distribution and Concurrency
(IWJPDC’07), Long Beach, CA, 2007, p. 197b (8 pages).

[30] D. Turner, X. Chen, Protocol-dependent message-passing performance on
Linux clusters, in: Proceedings of the 4th IEEE International Conference on
Cluster Computing (Cluster’02), Chicago, IL, 2002, pp. 187–194.

[31] L. Baduel, F. Baude, D. Caromel, Object-oriented SPMD, in: Proceedings of the
5th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’05), Cardiff, UK, 2005, pp. 824–831.

[32] INRIA, ProActive Website. Available from: <http://proactive.inria.fr> [Last
visited: August 2008].

[33] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey, A benchmark suite
for high performance Java, Concurrency: Practice and Experience 12 (6) (2000)
375–388.

[34] INRIA, NAS Parallel Benchmarks: ProActive implementation. Available from:
<http://proactive.inria.fr/nas_benchmarks.htm> [Last visited: August 2008].

[35] G.L. Taboada, C. Teijeiro, J. Touriño, High performance Java Remote Method
Invocation for parallel computing on clusters, in: Proceedings of the 12th IEEE
Symposium on Computers and Communications (ISCC’07), Aveiro, Portugal,
2007, pp. 233–239.

http://www.ietf.org/ids.by.wg/ipoib.html
http://www.ietf.org/ids.by.wg/ipoib.html
http://www.dolphinics.com/products/software.html
http://infiniband.sourceforge.net/archive/OSF_SDP_HLD.pdf
http://infiniband.sourceforge.net/archive/OSF_SDP_HLD.pdf
http://www.dolphinics.com/userfiles/files/Whitepaper/sci-socket.pdf
http://www.dolphinics.com/userfiles/files/Whitepaper/sci-socket.pdf
http://www.eecs.harvard.edu/-~mdw/proj/java-nbio
http://www.eecs.harvard.edu/-~mdw/proj/java-nbio
http://proactive.inria.fr
http://proactive.inria.fr/nas_benchmarks.htm

	Java Fast Sockets: Enabling high-speed Java communications on high performance clusters
	Introduction
	Related work
	Efficient Java socket implementation
	Serialization overhead reduction
	Socket protocol optimization
	Efficient shared memory socket communication

	High performance Java communication on clusters
	Efficient Java communication on high-speed cluster interconnects
	JFS application transparency

	JFS Performance evaluation
	Experimental configuration
	JFS Microbenchmarking on high-speed networks
	JFS on Gigabit Ethernet Jumbo Frames
	Java shared memory communication

	Performance analysis of parallel applications with JFS
	JFS-based message-passing
	JFS-based RMI

	Conclusions
	Acknowledgement
	References

