
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 1

Affine modeling of program traces
Gabriel Rodrı́guez, Mahmut T. Kandemir, Fellow, IEEE, Juan Touriño, Senior Member, IEEE

Abstract—A formal, high-level representation of programs is typically needed for static and dynamic analyses performed by compilers.
However, the source code of target applications is not always available in an analyzable form, e.g., to protect intellectual property. To
reason on such applications it becomes necessary to build models from observations of its execution. This paper presents an algebraic
approach which, taking as input the trace of memory addresses accessed by a single memory reference, synthesizes an affine loop
with a single perfectly nested statement that generates the original trace. This approach is extended to support the synthesis of unions
of affine loops, useful for minimally modeling traces generated by automatic transformations of polyhedral programs, such as tiling. The
resulting system is capable of processing hundreds of gigabytes of trace data in minutes, minimally reconstructing 100% of the static
control parts in PolyBench/C applications and 99.9% in the Pluto-tiled versions of these benchmarks.

Index Terms—Program modeling, optimizing compilers, polyhedral optimization, memory traces.

F

1 INTRODUCTION

A FFINE codes represent an important class of applica-
tions in many computing domains, such as supercom-

puting, embedded systems, or multimedia applications. For
the most part, these codes execute large regular loops, where
the control- and data-flow can be exactly represented using
affine functions of the loop index variables and loop in-
variant constants. These regions, often called Static Control
Parts (SCoP) [9], are usually modeled and optimized using
polyhedral compilation approaches [4, 8].

Many static and dynamic optimization and verification
techniques rely on the knowledge of the application code to
work. Unfortunately, the source code is not always available
to the optimizer. In embedded systems for example it is
common to find intellectual property (IP) cores with well
defined high level functionality, but whose internals are
opaque to the system designer and programmer. Organi-
zations will not provide executables for privacy reasons,
requiring researchers and contractors to deal with execution
traces instead. Even when source code is available, it may
not be amenable to static analysis and optimization, as
programmers may use complex data and control structures,
including code obfuscation techniques, that mask the un-
derlying application logic.

This paper presents an analytical approach for automat-
ically reconstructing an affine reference from a trace of its
memory accesses. The Trace Reconstruction Engine (TRE)
explores a tree-like space, in which level k contains all
possible loops with trip count equal to k, from a 1-level
nest iterating from 0 to (k − 1), to a k-level nest with
a single iteration per level. The system is based on the
observation that, in affine references, access strides must be
constructed as linear combinations of loop index variables.
The basic approach explores the entire solution space in a

• G. Rodrı́guez (corresponding author) and J. Touriño, Department
of Computer Engineering, Universidade da Coruña, Spain; email:
grodriguez@udc.es

• M.T. Kandemir, Department of Computer Science and Engineering, Penn-
sylvania State University, USA

brute force fashion. On top of it, an exploration engine based
on the mathematical properties of affine loops guides the
process to achieve efficient reconstruction. Since the engine
will eventually traverse the entire space, this process is
guaranteed to find the minimal canonical affine loop nest
that generates the exact input memory trace, given enough
time. The main contributions of this work are:

• A mathematical framework for the construction of an
affine representation of a given memory trace (Sec. 3),
without user intervention or access to source codes
or application binaries. Although compressing traces
using affine representations is not a novel idea and
has been explored in previous works [6, 7, 15], our
proposal distinctly focuses on a single reference at
a time. The backtracking mechanisms included in
the reconstruction algorithm enable the construction
of compact representations of complex traces, which
cannot be achieved using other approaches.

• Extensions for the construction of unions of affine
iteration domains to model piecewise-affine traces
(Sec. 3.1). These types of traces are generated by
codes which feature multiple lower and/or upper
bounds in a single loop, combined using max()
and min() functions, respectively, and are typically
viewed as the union of canonical iteration domains.
The exploration space is enlarged with respect to the
single-domain affine case.

• A detailed experimental evaluation of the proposed
technique (Sec. 4). Our results show that the frame-
work can be used to build compact representations
of large, complex traces, in acceptable time.

The framework can be potentially applied to guide all
sorts of static and dynamic analyses and optimizations
in the absence of source and/or binary codes, or when
working with codes that are not amenable to static analysis
for any reason. Examples of applications are automatic
code optimization, hardware and software prefetching, data
placement for locality optimizations, dependence analysis
for automatic parallelization, optimal design of embedded



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 2

memory systems for locality, or trace compression. These
applications are discussed in depth in Sec. 5, along with the
related work.

This article builds on an earlier work [22], which covered
the reconstruction of single-domain affine traces only. The
approach in the current paper handles the general class
of affine programs using unions of affine domains. New
experimentation has been conducted modeling piecewise-
affine traces, and previous experiments have been revised.

2 PROBLEM FORMULATION

In the general case, the memory trace of a program contains
all the memory accesses issued by its entire execution,
including multiple loop and non-loop sections. In this paper
it is assumed that each entry in the trace is labeled using an
identifier of the instruction issuing the access, e.g., its mem-
ory address as done by Intel’s Pin Tool [17]. The address
stream generated by each memory instruction is analyzed
separately. A mechanism to detect and extract loop sections
in the trace [16, 18] may be used if a single instruction may
appear in different loop scopes.

A general affine statement can be written as:

DO i1 = max(. . . , l1,x(−→ı ), . . .), min(. . . , u1,x(−→ı ), . . .)
...
DO iD = max(. . . , lD,x(−→ı ), . . .), min(. . . , uD,x(−→ı ), . . .)
V [f1(−→ı )] . . . [fN (−→ı )]

where {l(j,:), u(j,:); 0 < j ≤ D} are affine functions with
rational coefficients1; {fj(i1, . . . , iD), 0 < j ≤ N} is the set
of affine functions that converts a given point in the iteration
space of the loop to a point in the data space of V ; and
−→ı k = {ik1 , . . . , ikD}T is a column vector which encodes the
state of each iteration variable for the kth execution of V .
For simplicity, we denote lkj = max(. . . , lj,x(−→ı k), . . .) and
ukj = min(. . . , uj,x(−→ı k), . . .). Iteration bounds are assumed
to be inclusive. Since each fj is affine, the access can be
rewritten as:

V [f1(−→ı )] . . . [fN (−→ı )] = V [c0 + i1c1 + . . .+ iDcD] (1)

where V is the base address of the array, c0 is a constant
stride, and each {cj , 0 < j ≤ D} is the coefficient of the
loop index ij , and must account for the dimensionality of
the original array2.

During the execution of the loop, the access to V will or-
derly issue the addresses corresponding to V (−→ı 1), V (−→ı 2),
etc. These addresses will be registered in the trace file
together with the instruction issuing them.

2.1 Geometrical Considerations

In the polyhedral approach, each iteration of the former
loop is modeled as an integer point in the D-dimensional

1. We use u(−→ı ) to simplify notation, even though we should formally
write u(i1, . . . , ij−1). Coefficients of out-of-scope indices are assumed
to be 0. The same notation is applied to lower bounds.

2. For instance, an access A[2 ∗ i][j] to an array A[N ][M ] can be
rewritten as A[(2 ∗ M) ∗ i + j], where ci = 2M accounts for both
the constant multiplying i in the original access (2), and the size of the
fastest changing dimension (M ).

space. The set of all loop iterations is then the intersection
of an affine lattice and an integer polyhedron, resulting in a
Z–polyhedron [11]. Each of the F faces of a polyhedron
can be identified with a hyperplane which divides the
D-dimensional Euclidean space in two, and thus the Z–
polyhedron can be seen as the intersection of F half-spaces.
In the context of the polyhedral model, each of the F faces
corresponds to a lower or upper bound of an iteration index
of the loop nest. In the following we will refer to these as
the lower/upper bounds hyperplanes.

Consider two consecutive accesses, V (−→ı k) and
V (−→ı k+1), and assume that the loop index values in −→ı k

and the upper and lower bounds functions are known. The
values in −→ı k+1 can be readily calculated as follows:

1) Index ij will be reset if itself, and all inner in-
dices, have reached their respective iteration upper
bounds. Geometrically, ik+1

j = lk+1
j iff −→ı k lies on an

edge formed by the union of the upper bounds hy-
perplanes of the iteration polyhedron for dimension
j and inner dimensions (j + 1), . . . , D:(

∀x, j ≤ x ≤ D,ukx = 0
)

2) Index ij will increase by 1 if it has not yet reached
its iteration upper bound, but all inner indices have.
Geometrically, ik+1

j = ikj + 1 iff −→ı k lies on an
edge formed by the union of the upper bounds
hyperplanes of the iteration polyhedron for inner di-
mensions (j + 1), . . . , D, but not on the hyperplane
which serves as the upper bounds for dimension j:(

∀x, j < x ≤ D,ukx = 0
)
∧
(
ukj > 0

)
3) In any other case, there are inner indices which have

not yet reached their upper bounds, and therefore
ik+1
j = ikj .

Definition 2.1. A set of indices built complying with these
conditions will be referred to as a set of sequential indices.

Consequently, the instantaneous variation of loop index
ij between iterations k and (k + 1), δkj = (ik+1

j − ikj ), can
only take one of three possible values:

1) ij is reset to lk+1
j ⇒ δkj = lk+1

j − ikj
2) ij is increased by one⇒ δkj = 1
3) ij does not change⇒ δkj = 0

Lemma 2.2. The stride between two consecutive accesses σk =
V (−→ı k+1)− V (−→ı k) is a linear combination of the coefficients of
the loop indices.

Proof. Using Eq. (1), σk can be rewritten as:

σk = V + (c0+ c1i
k+1
1 + . . .+ cDi

k+1
D ) −

V + (c0+ c1i
k
1 + . . .+ cDi

k
D) =

= c1δ
k
1 + . . .+ cDδ

k
D = −→c −→δ

k

The single-domain integer affine class of loops is suf-
ficient to model all the memory references in the Poly-
Bench/C benchmarks [20]. An efficient algorithm to min-
imally reconstruct this class of loops is given in Sec. 3.



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 3

Section 3.1 details the necessary considerations to consider
the general class of affine loops (i.e., using union of iteration
domains). While piecewise-affine loops are scarcely used in
hand-written codes, they often appear when automatically
applying compiler optimizations such as polyhedral loop
tiling [10, 24].

3 LOOP SYNTHESIS

The proposed synthesis method is essentially a guided
exploration of the potential solution space, driven by the
first-order differences of the addresses accessed by a given
instruction, i.e., the access strides. Each node in this space
represents a convex polyhedron which corresponds to a
portion of the entire trace to be reconstructed. The possible
paths forward from each node are all the convex polyhedra
in which a single point has been added with respect to said
node. A geometrical depiction of this concept is shown in
Fig. 1, and a more general view is given in Fig. 2. Starting
from the root, a trivial loop which generates the first two
accesses in the trace, the TRE incorporates one access to the
reconstructed loop in each step, until it finds a solution for
the entire trace or determines that no affine loop is capable
of generating the input memory trace. The algorithm builds
the minimal loop capable of generating the observed access
trace3. This section develops the algebraic tools that allow
to efficiently traverse the solution space.

Let A = {a1, . . . , aP } =
{
V (−→ı 1), . . . , V (−→ı P )

}
be the

sequence of addresses generated by a single reference in a
single loop scope, extracted from the execution trace. The
reconstruction algorithm iteratively constructs a solution
SPD = {−→c ,U,−→w }, which generatesA using D nested loops.
The components of this solution are defined as follows:

• Vector −→c ∈ ZD of coefficients of loop indices.
• Matrix U ∈ ZF×D, and vector −→w ∈ ZF , the upper

bounds matrix and vector, respectively.

The iteration domain I is an integer polyhedron with F
bounding hyperplanes containing the iteration vectors −→ı ∈
ZD such that:

U−→ı +−→w ≥ −→0 T
(2)

where each row U(j,:) of the bounds matrix encodes the
coefficients of the jth bounds hyperplane, while wj contains
its independent term.

The access strides generated by a valid solution SPD must
match the input access trace. Using Lemma 2.2 this can be
expressed as:

−→c I = A ⇔ −→c (−→ı k+1 −−→ı k) = −→c −→δ
k

= σk,∀k ∈ [1, P )

The proposed synthesis method proceeds iteratively,
constructing partial solutions for incrementally larger parts
of A. The first partial solution is built as follows:

S21 =

{
−→c =

[
σ1
]
,U =

[
1

-1

]
,−→w = [0, 1]

}
(3)

3. For example, a 2-level loop with indices i and j might iterate
sequentially over the elements in array A[N ][M ] if the upper bounds
are defined as ui = N , uj = M and the access is V [i ∗M + j]. This
can be rewritten as a 1-level loop with index i, using ui = N ∗M and
access V [i].

or, equivalently:

DO i1 = 0, 1

a1 + σ1i1

Starting from this first partial solution the engine begins
working, gradually increasing its size, until it reaches a
solution for the entire trace. Upon processing access ak+1,
the algorithm first calculates the observed access stride,
σk = ak+1 − ak, and builds a diophantine linear equation
system based on Lemma 2.2 to discover the potential indices
−→ı k+1 which generate an access stride that is equal to the
observed one:

−→c (−→ı k+1 −−→ı k) = σk ⇒ (−→c T−→c )
−→
δ

k
= −→c Tσk (4)

where (−→c T−→c ) ∈ ZD×D is the system matrix, and
−→
δ

k
∈

ZD is the solution. There are two possible situations when
solving this system:

1) The system has one or more integer solutions. In

this case, for each solution
−→
δ

k
, the new index

−→ı k+1 = −→ı k+
−→
δ

k
, which must be sequential to−→ı k,

is calculated. U,−→w , and−→c remain unchanged. Each
of these solutions must be explored independently.

2) The system has no solution generating a sequential
index. In this case, it is always possible to incorpo-
rate the next element in the trace by increasing the
dimensionality of the synthesized loop. Because of
the added computational complexity associated to
dimensionality increases, the system may decide to
backtrack to a previously generated partial solution,
as explained in Sec. 3.2.

Although this diophantine system has infinite solutions
in the general case, the actual number of valid solutions is
limited by Def. 2.1. In fact, in order for the newly computed
−→ı k+1 to be sequential to −→ı k, only D valid solutions exist,
each of them of the form:{[

. . . ikj−1 ikj + 1 lk+1
j+1 . . .

]
, 0 < j ≤ D

}
(5)

This property allows a very efficient exploration of the
solution space. However, the total number of generated
alternatives is still large enough that traversing the solution
space in a breadth-first fashion is not practical. The follow-
ing guidance heuristic is incorporated: the system assumes
the currently computed iteration polyhedron bounds to be
correct, and explores the iteration index −→ı k+1 generated by
applying the rules in Sec. 2.1. If the generated index matches
the next element in the trace, the exploration continues.
Only if this fails will the engine generate the diophantine
system and test all its possible valid solutions.

3.1 Computing Piecewise-Affine Iteration Bounds
When the guidance heuristic described in the previous sec-
tion fails, the generated −→ı k+1 will not be the one predicted
by the current iteration bounds. U and −→w will need to be
recomputed to ensure that the synthesized loop corresponds
to the explored set of indices. This is done by recomputing
the bounds hyperplanes which are not coherent with the
newly generated iteration point iteratively, rotating the hy-
perplane in each step so that it contains the point furthest



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 4

(a) 2-d solutions
i30 3 6 9

i2 0
1

i1

0

1

(b) 3-d solutions

Fig. 1. Geometrical example of solution space. Assume that the reconstruction has reached a point represented by the iteration polyhedron I
including the black dots in Fig. 1a. Its tentative bounding half-spaces, represented by dashed lines, are (i1 ≥ 0), (i1 ≤ 1), (i2 ≥ 0), and (i2 ≤ 9).
There are 5 options for adding a point to I. The first two ones are depicted as hollow dots in Fig. 1a, and correspond to adding points (1, 9) or
(2, 0). Both will produce a potentially different stride in the access to V , depending on the access function f , which will be matched to the stride in
the memory trace to assess its correctness. Note that, if (2, 0) is selected, the upper bounds hyperplane for i2 will change to (i2 ≤ 9− i1) (dotted
line in the figure). The other three solutions correspond to dimensionality increases. One of them, depicted in Fig. 1b, corresponds to adding a
new dimension to I in a way that it represents the outer loop of the nest (since point (0, 1, 8) is followed by (1, 0, 0)). The access function f will be
modified to include i3 matching the stride in the memory trace. Note that two additional solutions like this one exist, in which the new loop is added
as the middle (the new point is (1, 1, 0)), or as the inner loop (the new point is (1, 8, 1)).

Fig. 2. Generic solution space. For each index −→ı k, there are (2D +
1) possible values for −→ı k+1. The D alternatives on the left side are
obtained using an operation +(j,−→ı ) that increases index ij by one, and
resets all inner indices. The (D+1) alternatives on the right are obtained
by applying an operation f(j,−→ı ), which inserts a new loop at level (j+
1). For instance, if −→ı k = [3, 5, 7] and lower bounds were 0, there are
7 alternatives for −→ı k+1: +(1,−→ı k) = [4, 0, 0], +(2,−→ı k) = [3,6, 0],
+(3,−→ı k) = [3, 5,8], f(0,−→ı k) = [1, 0, 0, 0], f(1,−→ı k) = [3,1, 0, 0],
f(2,−→ı k) = [3, 5,1, 0], and f(3,−→ı k) = [3, 5, 7,1].

away from it (in a way similar to Quickhull [3]). This process
repeats until a valid solution is found; otherwise there is no
convex polyhedron containing all required points. But it is
still possible that a piecewise-affine solution exists.

Piecewise-affine loops are formed by the union of affine
iteration domains (typically using max() and min() func-
tions on loop bounds). Discovering new bounds is a rel-
atively simple process: if rotating a bounds hyperplane
fails to make the iteration polyhedron consistent with the
generated iteration vectors, the engine will try to introduce
a new hyperplane so that the problematic iteration point
lies on its surface, and contains all other points in I. For
upper bounds hyperplanes this is a lightweight operation:

as illustrated by Eq. (5), only D sequential indices exist
under previously known lower bounds. However, discov-
ering new lower bounds is a more complex problem. In
this situation, the values for the indices which are reset on
Eq. (5) are unknown, and must be discovered by solving an
underdetermined equation system. Mathematically, this can
be modeled by modifying the +(j,−→ı ) operation in Fig. 2 so
that it increases index ij by one but, instead of resetting all
inner indices to the currently known lower bounds lj , resets
them to unknown values (ik+1

j+1 , . . . , i
k+1
D ) such that −→ı k+1

matches the observed stride:

−→c (−→ı k+1 −−→ı k) =
[
cj . . . cD

]


1

ik+1
j+1 − ikj+1

...
ık+1
D − ikD

 = σk

This system is underdetermined for any value (j < D −
1). This implies that, in the general case, there exist infinite
−→ı k+1 candidates that provide the observed stride. In order
to reduce the possibilities to a tractable set, two restrictions
are introduced:

1) Only K unknowns in the set (ik+1
j+1 , . . . , i

k+1
D ) are

allowed to reset to a value different from the ones
predicted by the currently known lower bounds.
In our experimental tests with PolyBench/C (see
Sec. 4.2), K = 3 is enough to ensure optimal recon-
struction of all references. Smaller values of K will
result in less branching, but will potentially cause
no solutions to be found within reasonable time or
memory constraints for some traces.

2) Candidate vectors are restricted to those inside or
adjacent to the iteration polyhedron projected by
the current bounds (i.e., no point may exist in ZD

in between a candidate vector and the projected



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 5

polyhedron). This achieves optimal reconstruction
of all references in PolyBench/C.

Once a valid −→ı k+1 is determined, a new bounds hy-
perplane is computed iteratively as previously described.
The process ensures that no points previously outside the
iteration domain are now included in it, by successively
adding as many new faces as necessary to preserve the
original bounds.

3.2 Algorithm
Algorithm 1 presents the pseudocode of the Trace Recon-
struction Engine (TRE). Esentially, the processing starts with
an empty SCoP, and tries to enlarge it by sequentially
adding points in the trace inside the add_iter call in
line 14: in line 2 all the indices lexicographically following
the most recent one are generated, while the loop in line 3
checks whether each of the generated indices explains the
next value−→ı k in the trace. A list of candidate SCoPs is main-
tained and sorted by fitness heuristics. Whenever a solution
cannot be found by building over the best ranked candidate,
control will return to the TRE function. This function will
retrieve the best ranked candidate in line 11, increase its
dimensionality to incorporate one new point to the SCoP,
and continue processing it. Line 4, which integrates the
new iteration vector in the iteration domain, includes the
potential modification of loop bounds and could fail if a
non-convex polyhedron is generated.

Algorithm 1: Pseudocode of the TRE
Input: the access trace, A; an input SCoP S
Output: a SCoP reproducing the accesses in A

1 Function add iter(A, S)
2 Find L = {−→ı k+1} lexicographical succesors of −→ı k;
3 for −→ı k+1 ∈ L such that −→ı k+1−→c = ak do
4 S′ = S ∪ −→ı k+1;
5 S list = S list ∪ add iter(A, S′)
6 end
7 end
8 Function TRE(A)
9 S list = {EMPTY SCoP};

10 while True do
// retrieve the best ranked SCoP

11 S = retrieve best(S list);
12 if (#DS == len(A)) then return S;

// add dimension to include ak

13 S = increase dimensionality(S, ak);
14 add iter(A, S);
15 end
16 end

The previous pseudocode is a high-level representation
of the actual implementation of the TRE. In fact, instead of
generating a single lexicographical successor as shown in
line 2, the engine streamlines the analysis by generating a
slice of values corresponding to a full iteration of the outer
loop, assuming that the currently known bounds are correct.
If the memory accesses generated by that slice match the ob-
served trace, the entire slice is incorporated and the process
continues. Otherwise, the granularity of the generated slice
is lowered, and the process repeated. Eventually, the trace
is processed at the single entry level if necessary. Once the
problematic region is analyzed, the size of the generated
slices becomes larger to increase performance.

When the guidance heuristic detailed in Sec. 3 works
flawlessly, the algorithm finishes in time O(P ) (the num-
ber of points in the trace). If the heuristic were to fail
systematically, the algorithm would finish in O(DP ). This
behavior would be very rare, and imply a complete lack
of regularity in the trace. From the memory perspective,
the current implementation of the TRE requires to load into
memory: i) the entire trace to be reconstructed; ii) U,−→w , and
−→c for each branch explored in the reconstruction tree; and
iii) a matrix containing the subset of surface points in the
iteration polyhedron of the branch being currently explored,
as they are needed when recomputing iteration bounds. This
is by far the largest of the structures manipulated during
the synthesis process. Other intermediate structures such
as equation systems never contain more than a few dozen
elements, and they are not relevant from the total memory
point of view.

4 EXPERIMENTAL RESULTS

The proposed TRE algorithm has been implemented in
Python and applied to the PolyBench/C 4.2.1 suite [20].
It includes 30 applications from domains such as linear
algebra, stencil codes, and data mining. The reconstruction
algorithm was run for one reference of each loop scope
in the static control parts of these applications (enclosed
within scop pragmas). The entire memory access trace
for each reference was stored in memory before being
processed. The “large” problem size was used, except for
floyd-warshall (“medium” size), which generates traces
one order of magnitude larger than the second largest
benchmark, taking up more than the available RAM. The
characteristics of the traces for each benchmark are broken
down in Table 1. Each execution was performed on an Intel
Core i7 8700K Coffee Lake 3.70 GHz, with 64 GB of RAM.

4.1 Single-Domain Traces

Figure 3 shows aggregated trace sizes and processing times
for each application. These largely depend on the number of
reconstructed loops, as well as on the iteration pattern. For
instance, the most efficient reconstruction is achieved for
one of the references in deriche, an edge detection filter
accessing arrays with a constant, single stride. The resulting
trace is therefore trivial to recognize and is processed at
8.5 billion accesses per second. Disregarding single stride
references, the most efficient reconstruction is achieved for
one of the fdtd-2d references, a 2-d finite-difference time-
domain kernel. This originally 3-d loop is reconstructed
as a 2-d loop (the two inner ones are coalesced into a
single one) in which the outer loop iterates only once per
each 1.2 million iterations of the inner one. As a result,
the reconstruction process can be largely streamlined: the
trace contains blocks of 1.2 million elements separated by
the same stride. Its 600 million accesses are sequentially
processed in 20 milliseconds. Note that these numbers are
referring to individual references contained in each applica-
tion, while the figures show the aggregated values.

On the opposite end, one of doitgen’s references, emit-
ting 3.4 million addresses, is the one processed at the slowest
rate. It features a 2-level loop nest where the largest block



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 6

TABLE 1
Characteristics of the PolyBench/C benchmarks. The TRE was run for one sample reference of each loop nesting level in each benchmark SCoP.

The total number of these sampled references for each benchmark is labeled as #Scopes in the table.

Original (Sec. 4.1) Tiled (Sec. 4.2)
Benchmark #Scopes #Accesses (×106) Max. depth #Scopes #Accesses (×106) Max. depth

2mm 4 1657.58 2 6 1656.96 6
3mm 6 2702.59 3 6 2701.71 6
adi 6 1993.01 3 12 996.00 5
atax 4 7.98 1 4 7.984 4
bicg 3 3.99 1 4 7.984 4

cholesky 4 1335.33 3 10 1363.90 6
correlation 8 1012.92 3 9 1013.64 6
covariance 5 1012.92 3 7 1013.64 6

deriche 6 53.08 2 3 26.54 4
doitgen 3 544.32 3 3 544.32 4
durbin 4 6.00 2 4 6.00 2
fdtd-2d 4 1798.40 3 7 598.93 6

floyd-warshall 1 125.00 2 1 125.00 5
gemm 2 1321.10 3 2 1321.10 6
gemver 4 12.00 2 3 8.00 4

gesummv 2 1.69 1 5 3.38 4
gramschmidt 6 1441.92 3 5 1441.92 5

heat-3d 2 1643.03 4 86 842.23 8
jacobi-1d 2 2.00 2 6 1.00 4
jacobi-2d 2 1684.80 3 23 843.70 6

lu 3 2666.67 3 13 2666.67 6
ludcmp 8 2672.67 3 15 2676.66 3

mvt 2 8.00 2 1 4.00 4
nussinov 5 2610.41 3 6 2604.17 5
seidel-2d 1 1996.00 3 1 1996.00 6

symm 2 600.60 3 5 600.60 3
syr2k 2 721.32 3 2 721.32 6
syrk 2 721.32 3 2 721.32 6

trisolv 2 2.00 2 5 2.00 4
trmm 2 600.60 3 2 600.60 6

Fig. 3. Reconstruction times (upper axis) and trace sizes (lower axis) for
PolyBench/C benchmarks, ordered by trace size. Axes are logarithmic.

of single-strided accesses contains only 160 elements. As
such, the number of outer loop iterations, and consequently
generated slices, is much larger. While in the slowest non-
single-strided case the engine is capable of processing 2
million accesses per second, in the fastest one this figure
goes up to 3 billion accesses per second (1500x faster). The
entire aggregated input is processed at a rate of 20 million
accesses per second.

A straightforward use of affine modeling is memory
trace compression. We compared raw sizes, sizes using
NumPy’s NPZ (which uses gzip), and the sizes required
to store U, −→w , and −→c , which are enough to reconstruct the
entire trace. The entire experimental set, which is 230 GB in
size and can be compressed into 14.5 GB using NPZ, takes
up 14 kB when compressed using the affine loop bounds
reconstructed by the TRE. This represents a 17.2 × 106 and
1.1 × 106 compression factor with respect to the raw data
and NPZ, respectively.

4.2 Piecewise-Affine Traces
Figure 4 details the reconstruction performance of tiled
PolyBench/C 4.2.1 benchmarks. Pluto 0.11.4 was used to tile
the static control parts in PolyBench/C using the --tile
parameter. No parallelization or vectorization was per-
formed. The figure clearly shows how the performance
of recognizing the traces of tiled codes has decreased, in
general, with respect to the original, untiled ones. The best
performance is again obtained for a single-strided trace
from deriche, recognized at a speed of 8.5 billion accesses
per second. If we focus on non-single strided accesses, the



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 7

Fig. 4. Reconstruction times (upper axis) and trace sizes (lower axis)
for the tiled PolyBench/C benchmarks, ordered by trace size. Axes are
logarithmic. The left bar in the time axis represents the reconstruction
time for the original, untiled code and is included for reference.

fastest reconstruction is achieved for one of the references
in ludcmp, an LU decomposition followed by forward
substitution, embedded in a triangular 3-d loop. The trace
is reconstructed at 43 million accesses per second. On the
opposite situation, one of the references of heat-3d, a
stencil code solving the 3-d heat equation, is reconstructed
at a rate of only 7000 accesses per second. While this
is a small subtrace, reconstructed in under 3 minutes, it
exemplifies one of the added difficulties of processing high
dimensionality traces. This is a 6-dimensional loop. Not
only the complexity of the equation systems is increased,
but also the number of potentially valid paths. The entire
aggregated input is processed at a rate of 6.1 million accesses
per second, 3 times slower than in the single-domain case.
Furthermore, 4 small references in the heat-3d benchmark
(out of the total 258 analyzed, representing 0.1% of the total
experimental data volume) cannot be reconstructed by the
current implementation of the TRE, as memory is exhausted
before finding a solution.

As for trace compression, we again compare raw sizes,
sizes using NPZ compression, and the sizes required to store
U, −→w , and −→c . The experimental set now takes up 202 GB;
8.1 GB using NPZ; and 1.22 MB when reconstructed using
the TRE. This represents a 1.7× 105 and 6.8× 103 compres-
sion factor with respect to raw data and NPZ, respectively.

5 RELATED WORK AND APPLICATIONS

Several works have explored the representation of traces as
loops to achieve benefits such as compression or program

optimization. Clauss et al. [6, 7] characterized program
behavior using polynomial piecewise periodic and linear
interpolations separated into adjacent program phases to
reduce function complexity. Ketterlin and Clauss [15] pro-
posed a method for trace prediction and compression based
on representing memory traces as sequences of nested loops
with affine bounds and subscripts. From an input trace
containing multiple references, they synthesize a program
that generates the same trace when executed. Interest-
ingly, although the objectives are very similar to our work,
their approach is very different. As opposed to the single-
reference approach followed by TRE, this work models full
traces using imperfectly nested loops, without pre- or post-
processing steps. A stack of terms (trace entries) is used,
searching for triplets that can be rewritten as a loop. Non-
minimal solutions may be found due to the greedy approach
to merging triplets, or if some algorithmic parameters (e.g.,
the window size) are not large enough to detect regularity.
We applied the approach in [15] to the same input traces as
provided to the TRE in Sec. 4, with a window size of 100
terms. Single-domain traces are minimally reconstructed,
except for 4 references in the cholesky, lu, ludcmp, and
nussinov benchmarks, for which several loops and state-
ments are synthesized. Out of a total of 107 references, they
account for 21.3% of the total data volume. For piecewise-
affine traces the problem is exacerbated: multistatement
representations are generated for 197 out of 258 references,
accounting for 90.7% of the data volume. The average num-
ber of statements generated by [15] in this case is 16.4, with a
maximum of more than 2000 for seidel-2d, a particularly
complex input. However, the approach in [15] manages
to solve the 4 references in heat-3d for which the TRE
fails, and decreases maximum loop depth when it generates
multiple statements for a single reference.

One application example where minimal reconstruction
is desirable is generating equivalent affine versions of non-
affine codes, which may then be optimized using an off-the-
shelf polyhedral compiler. An example is the optimization
of the sparse matrix-vector multiplication by Rodrı́guez and
Pouchet [21]. The approach employed in this work was
to i) trace the execution of the irregular SpMV code for a
given input matrix; ii) analyze the generated trace using
the TRE; iii) generate an affine code that runs the original
computation from the TRE output; and iv) generate code us-
ing off-the-shelf polyhedral compilers. Generating minimal
code in this case proved to be critical to avoid large control
overheads in the automatically generated affine codes.

Trace-based code reconstruction has been successfully
employed for automatic parallelization. Holewinski et al.
[12] use dynamic data dependence graphs derived from
sequential execution traces to identify vectorization oppor-
tunities. Apollo [14, 23] is a dynamic optimizer which uses
linear interpolation and regression to model observed mem-
ory accesses. Nearly affine accesses are approximated using
two hyperplanes enclosing potentially accessed memory
regions, and their convex hull incorporated into the de-
pendence model. Skeleton optimizations are statically built,
reducing runtime overhead; and are dynamically selected,
instanced, and verified using speculative mechanisms.

To reduce remote memory accesses in NUMA architec-
tures, good data placement is essential. Piccoli et al. [19]



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2853747, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, REVIEW DRAFT, 2018 8

propose a combination of static and dynamic techniques
for migrating memory pages with high reuse. A compiler
infers affine expressions for array sizes and the reuse of each
memory access, and inserts checks to assess the profitability
of potential page migrations at runtime. Our proposal can
also provide the essential information for data placement
in NUMA architectures, either statically after trace-based
reconstruction and reconstructed code analysis, or dynami-
cally as a software-based prediction mechanism.

Prior research investigated the problem of designing
ad-hoc memory hierarchies for embedded applications.
Catthoor et al. [5] proposed a compiler-based methodology
to derive optimal memory regions and associated data al-
location. Angiolini et al. [1] use a trace-based method that
analyzes the access histogram to determine which memory
regions to allocate to scratchpad memory [2]. Issenin and
Dutt [13] instrument source code to generate annotated
memory traces including loop entry and exit points, and
use this information to generate affine representations of
amenable loops and optimize scratchpad allocation. The
TRE can be employed to apply affine techniques for custom
memory hierarchy design for applications for which affine
analysis of the source code is not feasible. This is of partic-
ular interest for IP cores included in embedded devices. It
can also be employed to drive memory allocation managers.

6 CONCLUDING REMARKS

This work has presented a novel algebraic approach for
the construction of formal models of loop codes through
the analysis of their memory traces. A Trace Reconstruction
Engine (TRE) iteratively builds candidate loops that model
increasingly larger portions of the trace by processing the or-
dered access strides in the memory trace. The mathematical
formulation of the problem has been studied, developing
methods for the efficient traversal of the solution space.
The efficacy of the approach has been demonstrated using
both single-domain and piecewise-affine inputs, using the
original and tiled PolyBench/C benchmarks, respectively.
The experimental results have shown excellent average
reconstruction performance, allowing to model traces con-
taining billions of entries in a matter of minutes. These
reconstructions are more compact than those generated by
alternative approaches, which is critical for code generation.
The proposed modeling is widely applicable to a number of
different problems, such as automatic code generation and
optimization, trace compression, dynamic dependence anal-
ysis, memory management, or memory hierarchy design.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Economy
and Competitiveness of Spain, Project TIN2016-75845-P
(AEI/FEDER, EU); NSF grants 1626251, 1409095, 1629129,
1439057, 1213052, 1439021; and a grant from Intel Corp.
We gratefully thank Prof. Alain Ketterlin and Prof. Philippe
Clauss for providing access to their trace analysis tool.

REFERENCES
[1] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time

algorithm for on-chip scratchpad memory partitioning. In

Proc. Int. Conf. Compilers, Archit., Synth. Embed. Syst., pages
318–326, 2003.

[2] R. Banakar et al. Scratchpad memory: Design alternative
for cache on-chip memory in embedded systems. In Proc.
10th Int. Symp. Hardw./Softw. Codesign, pages 73–78, 2002.

[3] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The
Quickhull algorithm for convex hulls. ACM Trans. Math.
Softw., 22(4):469–483, 1996.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan. A practical automatic polyhedral parallelizer
and locality optimizer. In Proc. ACM Conf. Prog. Lang.
Design Impl., pages 101–113, 2008.

[5] F. Catthoor et al. Custom Memory Management Methodology.
Kluwer Academic Publishers, Boston, 1998.

[6] P. Clauss and B. Kenmei. Polyhedral modeling and analy-
sis of memory access profiles. In Proc. Int. Conf. App.-Spec.
Syst. Archit. Procs., pages 191–198, 2006.

[7] P. Clauss, B. Kenmei, and J. C. Beyler. The periodic-linear
model of program behavior capture. In Proc. 11th Int. Euro-
Par Conf., pages 325–335, 2005.

[8] A. Cohen, S. Girbal, and O. Temam. A polyhedral ap-
proach to ease the composition of program transforma-
tions. In Proc. 10th Int. Euro-Par Conf., pages 292–303, 2004.

[9] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem. Part II. Multidimensional time. Int. J. Parallel
Prog., 21(6):389–420, 1992.

[10] S. Girbal et al. Semi-automatic composition of loop trans-
formations for deep parallelism and memory hierarchies.
Int. J. Parallel Prog., 34(3):261–317, 2006.

[11] G. Gupta and S. Rajopadhye. The Z-polyhedral model.
In Proc. 12th ACM Symp. Princ. Pract. Parallel Prog., pages
237–248, 2007.

[12] J. Holewinski et al. Dynamic trace-based analysis of
vectorization potential of applications. In Proc. ACM Conf.
Prog. Lang. Design Impl., pages 371–382, 2012.

[13] I. Issenin and N. Dutt. FORAY-GEN: Automatic generation
of affine functions for memory optimizations. In Proc.
Design, Autom. Test Europe Conf. Exp., pages 808–813, 2005.

[14] A. Jimborean et al. Dynamic and speculative polyhedral
parallelization using compiler-generated skeletons. Int. J.
Parallel Prog., 42(4):529–545, 2014.

[15] A. Ketterlin and P. Clauss. Prediction and trace com-
pression of data access addresses through nested loop
recognition. In Proc. 6th Int. Symp. Code Gen. Opt., pages
94–103, 2008.

[16] M. Kobayashi. Dynamic characteristics of loops. IEEE
Trans. Comput., 33(2):125–132, 1984.

[17] C.-K. Luk et al. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proc. ACM Conf.
Prog. Lang. Design Impl., pages 190–200, 2005.

[18] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri.
Identifying potential parallelism via loop-centric profiling.
In Proc. 4th Int. Conf. Comp. Front., pages 143–152, 2007.

[19] G. Piccoli et al. Compiler support for selective page
migration in NUMA architectures. In Proc. 23rd Int. Conf.
Parallel Archit. Compil. Tech., pages 369–380, 2014.

[20] L.-N. Pouchet. PolyBench: The Polyhedral Benchmarking
suite. http://polybench.sf.net, 2011. Last accessed: June
2018.

[21] G. Rodrı́guez and L.-N. Pouchet. Polyhedral modeling
of immutable sparse matrices. In Proc. 8th Int. Works.
Polyhedral Compil. Tech., 2018.

[22] G. Rodrı́guez, J. M. Andión, M. T. Kandemir, and
J. Touriño. Trace-based affine reconstruction of codes. In
Proc. 14th Int. Symp. Code Gen. Opt., pages 139–149, 2016.

[23] A. Sukumaran-Rajam and P. Clauss. The polyhedral model
of nonlinear loops. ACM Trans. Archit. Code Optim., 12(4):
48, 2016.

[24] M. Wolfe. More iteration space tiling. In Proc. ACM/IEEE
Supercomput. Conf., pages 655–664, 1989.

http://polybench.sf.net

