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Abstract

This paper presents a more efficient Java Remote Method

Invocation (RMI) implementation for high-speed clusters.

The use of Java for parallel programming on clusters is

limited by the lack of efficient communication middleware

and high-speed cluster interconnect support. This imple-

mentation overcomes these limitations through a more ef-

ficient Java RMI protocol based on several basic assump-

tions on clusters. Moreover, the use of a high performance

sockets library provides with direct high-speed interconnect

support. The performance evaluation of this middleware on

a Gigabit Ethernet (GbE) and a Scalable Coherent Inter-

face (SCI) cluster shows experimental evidence of through-

put increase. Moreover, qualitative aspects of the solution

such as transparency to the user, interoperability with other

systems and no need of source code modification can aug-

ment the performance of existing parallel Java codes and

boost the development of new high performance Java RMI

applications.

1. Introduction

Java, due to appealing characteristics such as platform

independence, portability and increasing integration into

existing applications, is gaining ground in environments

where more traditional languages still have their predom-

inance. One of these environments is parallel computing,

where the performance is a key aspect. Regarding high per-

formance parallel applications, the most common architec-

ture is the cluster, as it delivers outstanding parallel perfor-

mance at a reasonable price/performance ratio. Neverthe-

less, the use of Java parallel applications on clusters is still

an emerging option, since the use of inefficient communi-

cation middleware has delayed its use. On clusters, effi-

cient communication performance is key to deliver scalabil-

ity to parallel applications, but Java lacks efficient commu-

nication middleware. Even if the cluster nodes were inter-

connected by a high-speed network, such as SCI, Myrinet,

Infiniband and Giganet, Java would not take advantage of

this mainly because these interconnection technologies are

poorly supported. In fact, Java only fully supports these

high-speed interconnects through TCP/IP protocol stack

emulations. However, the TCP/IP protocol makes ineffi-

cient use of high-speed interconnects. Moreover, the emula-

tion libraries do not take advantage of the high-speed inter-

connect capabilities to offload the host CPU from communi-

cation processing. Thus, the overhead of the TCP/IP emula-

tion libraries is significant [15]. Examples of IP emulations

are IP over MX and IP over GM [11] on Myrinet, LANE

driver [7] over Giganet, IP over Infiniband (IPoIB) [6] and

ScaIP [2] and SCIP [4] on SCI.

Besides the lack of efficient high-speed cluster support,

the Java Virtual Machine (JVM) does not provide with ef-

ficient communication middleware for cluster computing.

Some attempts have been made to develop efficient middle-

ware for Java Distributed Shared Memory (DSM) imple-

mentations (e.g., CoJVM [9]) and for high performance

Java message-passing libraries (e.g., MPJ Express [1] and

MPJ/Ibis [3]). Nevertheless, these libraries do not optimize

widely extended APIs and their integration into existing

projects is reduced. Regarding the optimization of Remote

Procedure Calls (RPCs), some previous efforts have been

done in CORBA, especially optimizing high performance

CORBA implementations [5]; and in Java RMI, developing

several Java RMI implementations (see Section 2). It can

also be found related projects on optimizing Java I/O for

cluster computing, particularly on high performance Java

parallel file systems, being jExpand [13] a good representa-

tive.

The goal of our work is to provide with a high perfor-

mance Java RMI implementation with high-speed network

support. This can be done by optimizing the Java RMI

protocol for cluster communications under some basic as-

sumptions for the target architecture, and using a high per-

formance sockets library that copes with the requirements



of an RMI protocol for parallel computing on high-speed

clusters. As Java RMI is a widely spread API, many Java

parallel applications and communication libraries can bene-

fit from this efficient Java RMI implementation. Moreover,

the objective is to optimize this protocol with the minimum

associated tradeoffs. Thus, the solution is transparent to the

user, it does not modify the source code, and it is interop-

erable with other systems. The tradeoff is that this protocol

is limited to clusters with a homogeneous configuration in

terms of JVM and architecture and with a shared file sys-

tem, although most of the high performance clusters are un-

der these conditions.

2. Related Work

Different frameworks have been implemented with the

efficiency of RMI communication on clusters as their

goal. The most relevant ones are KaRMI [14], RMIX [8],

Manta [10] and Ibis [12]. KaRMI is a drop-in replacement

for the Java RMI framework that uses a completely different

protocol and introduces new abstractions (such as “export

points”) to improve communications specifically for cluster

environments. However, KaRMI suffers from performance

losses when dealing with large data sets and its interoper-

ability is limited to the cluster nodes. RMIX extends Java

RMI functionality to cover a wide range of communication

protocols, but the performance on high performance clus-

ters is not satisfactory. The Manta project is a different ap-

proach for implementing RMI, based on Java to native code

compilation. This approach allows for better optimization,

avoids data serialization and class information processing

at runtime, and uses a lightweight communication proto-

col. Finally, the Ibis framework is a Java solution that ex-

tends Java RMI to make it more suitable for grid computing.

Looking for performance, Ibis supports some high perfor-

mance networks and avoids the runtime type inspection.

3. Java RMI Optimization

The design and implementation of a high perfor-

mance Java RMI library for parallel computing on clus-

ters has been done bearing in mind: (1) the advan-

tages/disadvantages of previous Java RMI optimization

projects analyzed in the previous section; (2) the objectives

of the proposed Java RMI implementation: the use of a stan-

dard API, increase communication efficiency transparently

to the user, no source code modification, and interoperabil-

ity with other systems; and (3) several basic assumptions

about the target architecture, high performance computing

clusters, such as the use of a shared file system from which

the classes can be loaded, homogeneous architecture of the

cluster and the use of a single JVM version. Out of these

basic assumptions a more efficient communication is not

guaranteed.
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Figure 1. Java RMI layered architecture

Java RMI has been designed following a layered archi-

tecture approach. Figure 1 presents, from bottom to top,

the transport layer, responsible for managing all communi-

cations, the remote reference layer, responsible for handling

all references to objects, the stub/skeleton layer, in charge of

the invocation and execution, respectively, of the methods

exported by the objects; and the client and server layer, also

known as service layer. The activation, registry and dis-

tributed garbage collection (DGC) services are also part of

this service layer.

In order to optimize efficiently Java RMI, an analysis of

the overhead of an RMI call has been accomplished. This

overhead can be decomposed into four categories: (1) Net-

work or transport handling, (2) RMI Protocol processing,

mainly stub and skeleton operation, (3) Serialization and (4)

DGC. Figure 2 shows a typical Java RMI call runtime’s pro-

file. It presents a 3KB Object RMI send on SCI using a high

performance Java sockets implementation. Almost 84% of

the overhead belongs to Network, 12.7% to the costly seri-

alization process, 3.3% to Protocol, and a minimal 0.2% to

DGC.

Figure 2. 3KB Object RMI send on SCI

The overhead incurred by the different phases of an RMI

call has been considered in relative importance order to pro-

ceed with the optimization process. Thus, the proposed im-

provements are: (1) transport improvements, focused on the

use of a high performance Java sockets implementation and



on managing data to reduce sockets delays and buffering,

(2) serialization improvements, and (3) object manipulation

improvements, changing the protocol to reduce the informa-

tion about objects that Java RMI protocol includes in each

communication, selecting the minimal data to successfully

reconstruct a serialized object.

3.1. Transport Protocol Optimization

3.1.1 High Performance Sockets Support

The transport overhead can be reduced through the use

of a high performance Java sockets implementation, named

Java Fast Sockets (JFS) [16]. JFS provides with high per-

formance network support on Java (currently SCI support)

as it increases communication performance avoiding unnec-

essary copies and buffering and the cost of primitive data

type array serialization, the process of transforming the ar-

rays in stream bytes to send across the network. Most of

these optimizations are based on the use of native methods

as they obtain higher performance, but its use has associ-

ated tradeoffs: as they are more prone to failures and attacks

they can compromise slightly the stability and security of

the JVM.

JFS increases communication throughput looking for the

most efficient underlying communication library in every

situation. Moreover, it is portable because it implements

a general “pure” Java solution over which JFS communica-

tions can rely on absence of native communication libraries.

The “pure” Java approach obtains, in general, worse per-

formance, but the stability and security of the application

(associated tradeoffs for the higher performance of the na-

tive approach) is not compromised. The transparency to the

user is achieved through Java reflection: the Factory for cre-

ating Sockets can be set at application startup to the JFS

SocketImplFactory, and from then on, all sockets commu-

nications will use JFS. This feature allows Java RMI ap-

plications to use JFS transparently and without any source

code modification. Nevertheless, if a Java RMI implemen-

tation wants to take most of the new JFS features, optimized

communication protocols and native array serialization, it

has to change its implementation to use these JFS capabili-

ties.

3.1.2 Reduction of Block-data Information

By default, all primitive data that are serialized in a

communication are inserted in a data block. Data blocks are

used to differentiate data from different objects by setting

delimitation marks. To create them, the Java RMI protocol

uses a special write buffer, with some locks to help its man-

agement. The major goal of using this strategy for primitive

data in serialization is to deal correctly with the version-

ing issue, but after removing some versioning information

(improvement that will be described in Section 3.3.1) this

block-data strategy is useless. Thus, this strategy has been

disabled and the management of the buffer has been simpli-

fied, supporting only a minimal control to avoid serializa-

tion and deserialization incoherences.

3.2. Serialization Overhead Reduction

3.2.1 Native Array Serialization

In earlier versions of Java RMI, primitive data type ar-

rays had to be serialized in an element-by-element ap-

proach. Thus, each byte of their elements (except for

booleans) had to be processed using a pair of operations: a

boolean AND and a right shift to process the next byte (ex-

cept for the least significant byte). In the last versions, this

inconvenience has been partially solved, implementing the

native serialization of integer and double arrays, achieving

a faster serialization. A generalized approach has been pro-

posed for array serialization, which includes implementing

a new generic, native method that can process arrays of any

primitive data type as they were byte arrays. This method,

in fact, has been implemented in JFS and used from the se-

rialization method.

3.3. Object Manipulation Improvements

3.3.1 Versioning Information Reduction

For each object that is serialized, the Java RMI protocol

serializes its description, including its type, version number

and a whole, recursive description of its attributes; i.e., if an

attribute is an object, all its attributes have to be described

through versioning. This is a costly process, because the

version number of an object has to be calculated using re-

flection to obtain information about the class. This version-

ing information is important to deserialize the object and

reconstruct it in the receiving node, because sender and re-

ceiver can be running different versions of the JVM. Under

the assumption of a shared file system and a single JVM,

the proposed solution is to send only the name of the class

to which the object belongs, and reconstruct the object bas-

ing only on the class description at the receiving side. As

both sides use the same JVM the interoperability is not com-

promised.

3.3.2 Class Annotation Reduction

Class annotations are used to indicate the locations (as

Java Strings) from which the remote class loaders have to

get the serialized object classes. This involves the use of

specific URL class loaders. In a high performance cluster

environment with a shared file system and a single JVM, it



is useful to avoid annotating classes from the java.* pack-

ages, as they can be loaded by the default class loader

that guarantees that serialized and loaded classes are the

same. This change could also be applied to user classes,

but the implementation has been restricted to java.* pack-

ages to preserve interoperability. In fact, the optimized

RMI is interoperable applying the optimizations for intra-

cluster communication, and relying on the default RMI im-

plementation when communicating with a machine outside

the cluster. Thus, the ability to use multiple class loaders is

not compromised.

3.3.3 Array Processing Improvements

The Java RMI protocol processes arrays as objects, with

the consequent useless type checks and reflection opera-

tions. The proposed solution is to create a specific seri-

alization method to deal with arrays, hence avoiding that

useless processing. Thus, an early array detection check is

performed, and the array type is obtained through checking

against a primitive data types list. This list has been em-

pirically obtained from the frequency of primitive data type

appearance in high performance Java applications. This list

(double, int, float, long, byte, Object, char, boolean) opti-

mizes the type casting compared to the default list (Object,

integer, byte, long, float, double, char, boolean). If an object

encapsulates a primitive data type array the proposed seri-

alization method will handle this array when serializing the

members of the object.

4. Performance Evaluation

4.1. Experimental Configuration

The testbed consists of two dual-processor nodes (PIV

Xeon at 3.2 GHz with hyper-threading disabled and 2GB

of memory) interconnected via SCI and Gigabit Ether-

net (GbE). The SCI NIC is a D334 card plugged into a

64bits/66MHz PCI slot, whereas the GbE is a Marvell

88E8050 with an MTU of 1500 bytes. The OS is Linux

CentOS 4.2 with compilers gcc 3.4.4 and Sun JDK 1.5.0 05.

The SCI libraries are SCI Sockets 3.0.3, DIS 3.0.3 (SCILib

and SISCI), ScaIP 1.0.0 and SCIP 1.2.0.

In order to benchmark communications, Java RMI and

Java sockets versions of NetPIPE [17] have been developed

(there is neither Java RMI nor Java sockets NetPIPE pub-

licly available version). The results considered in this sec-

tion are the half of the round trip time of a ping-pong test.

Figure 3 shows the sequence diagram of the Java RMI ping

and ping-pong tests. It has been taken into account that Java

micro-benchmarking has some particularities. Thus, in or-

der to obtain JVM Just in Time (JIT) results from running

fully optimized native compiled bytecode, 10000 warm-up

c:Client ps:PongServer

CLIENT SERVER

ping()

 return

 pingpong()

pong()

return

return

s:Server

Figure 3. Ping and ping-pong RMI benchmark

sequence diagram

iterations have to be executed before the actual measure-

ments. It has been measured the performance of byte and

integer arrays as they are frequent communication patterns

in Java parallel applications.

Figure 4 shows an overview of the six-layered proposed

architecture for high performance Java RMI parallel appli-

cations on GbE and SCI. Given components are depicted

in dark gray, whereas the contribution presented in this pa-

per, the optimized Java RMI (from now on “Opt RMI”), is

colored in light gray. From bottom to top it can be seen

the Network Interface Card (NIC) layer, NIC drivers, na-

tive sockets, Java sockets and the required IP emulation li-

braries, Java RMI implementations and high performance

Java parallel applications.

SCI NICGbE NIC

SCI Driver: SISCIGbE Driver

SCI Sockets / SCILib

JFS

 TCP/IP Sockets

  Java

Sockets
   JFS

RMI

 IP Emulation

HP Java Apps HP Java Apps

  Java Sockets

KaRMIOpt RMI RMI Opt RMI KaRMI

Figure 4. High performance Java RMI parallel

applications overview

4.2. Java Sockets Performance Evaluation

Figure 5 shows experimentally measured latencies and

bandwidths of the default Java sockets and JFS as a func-

tion of the message length, for byte and integer arrays

on SCI. The bandwidth graph (right) is useful to compare

long-message performance, whereas the latency graph (left)

serves to compare short-message performance. It can be



 0

 10

 20

 30

 40

 50

 60

 70

 80

204810245122561286432168

L
a
te

n
c
y
 [

µ
s
]

Message size [bytes]

         Java Primitive Data Type Communication (SCI)

Byte Array (Java Sockets on SCIP)
Byte Array (JFS)

Integer Array (Java Sockets on SCIP)
Integer Array (JFS + default serialization)
Integer Array (JFS + native serialization)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

2MB1MB256KB64KB16KB4KB1KB

B
a
n

d
w

id
th

 [
M

b
p

s
]

Message size

         Java Primitive Data Type Communication (SCI)

Byte Array (Java Sockets on SCIP)
Byte Array (JFS)

Integer Array (Java Sockets on SCIP)
Integer Array (JFS + default serialization)
Integer Array (JFS + native serialization)

Figure 5. Java sockets primitive data type communication performance

seen that JFS clearly outperforms Java sockets, as JFS has

direct SCI support and Java sockets use an emulation library

(SCIP) that adds considerable overhead. Furthermore, it

can be seen the influence on JFS of the different underly-

ing native SCI protocols as their protocol boundaries can be

appreciated at 128 bytes and at 8KB message sizes. Regard-

ing integer array communication, the performance obtained

when communicating using the native serialization is simi-

lar to the byte array communication.

4.3. Java RMI Experimental Results

Figure 6 compares the typical Java RMI runtime’s profile

(see Figure 2) with the Opt RMI one. In order to compare

only at the RMI protocol level, both RMI implementations

run on top of JFS on SCI. The measures presented are the

mean of ten calls, showing a small variance. As it can be

seen, Network and Protocol overheads decrease. The expla-

nation for this behavior is that sending an Object with sev-

eral attributes (both Objects and primitive data types) can be

costlier in Java RMI than in Opt RMI because of the over-

head, in terms of data payload, imposed by the versioning

information and class annotation. In this case, sending this

particular 3KB Object involves a payload almost 3 times

larger in Java RMI than in Opt RMI. Nevertheless, the Seri-

alization process takes longer in Opt RMI because the RMI

server has to obtain the information on how to deserialize

the object.

Figure 7 presents the results for RMI integer array

communication using KaRMI [14], Java RMI and Opt RMI.

Regarding the two upper graphs (GbE), KaRMI shows the

lowest latency for short messages (< 1KB), but the high-

est communication overhead for larger messages. The Opt

RMI obtains slightly better results than Java RMI. Regard-

ing SCI graphs, KaRMI and Java RMI on SCIP show the

Figure 6. 3KB Object RMI send on SCI

poorest results. However, substituting Java sockets as trans-

port protocol by JFS improves the results significantly. In

this case, KaRMI presents slightly better performance than

Java RMI, for all message sizes. Moreover, KaRMI shows

better performance on SCI than on GbE, mainly for being

designed to cope with high performance communication li-

braries, and it obtains poorer results with TCP/IP (GbE).

Regarding the RMI bandwidth on SCI, it can be seen that

Java RMI and KaRMI performance drops for large mes-

sages (> 256KB) caused by a native communication pro-

tocol boundary. The Opt RMI presents slightly lower la-

tencies than Java RMI and KaRMI for short messages. For

longer messages its performance benefits increase signifi-

cantly. Moreover, the Opt RMI obtains higher bandwidth

optimization on SCI than on GbE as the interconnection

network, something independent of the RMI protocol im-

plementation, acts as the main performance bottleneck on

GbE, whereas on SCI the major bottleneck is the protocol

implementation itself.

Figure 8 presents results of communicating medium-size
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Figure 7. Java RMI integer array communication performance
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Figure 8. Java RMI object array communication performance



(3KB) Object arrays. The Opt RMI obtains the best perfor-

mance for arrays of up to 8 objects. Although its latency for

a single object is small, there is an important “extra” over-

head for each object processed, bigger than for KaRMI and

Java RMI overheads. Thus, for arrays from 8 objects Java

RMI and KaRMI obtain better performance on GbE and

SCI, respectively. The Opt RMI “extra” overhead is caused

by its inability to detect if the object sent has changed since

previous RMI calls. The object sent did not change in the

tests performed.

5. Conclusions

A more efficient Java RMI implementation has been pre-

sented. This solution is transparent to the user, interoperable

with other systems, it does not need source code modifica-

tion and it offers a widely spread API. The RMI protocol

optimizations have been focused on: (1) reducing block-

data information, (2) the use of a high performance Java

sockets library (JFS) as transport protocol, (3) performing

native array serialization, (4) reducing versioning informa-

tion, and (5) reducing class annotations.

Experimental results have shown that JFS greatly im-

proves Java sockets performance, especially on a high-

speed interconnect (SCI). Moreover, the RMI protocol op-

timizations reduce significantly the RMI call overhead,

mainly on high-speed interconnection networks and for

communication patterns frequently used in high perfor-

mance parallel applications, especially for primitive data

type arrays.
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