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Abstract—Partitioned Global Address Space (PGAS) languages
offer programmers a shared memory view that increases their
productivity and allow locality exploitation to obtain good per-
formance on current large-scale distributed memory systems.
UPCBLAS is a parallel numerical library for dense matrix
computations using the PGAS Unified Parallel C (UPC) language.
The interface of this library exploits the characteristics of the
PGAS memory model and thus it is easier to use than MPI-based
libraries. This paper addresses the implementation of solvers of
systems of equations through Cholesky and LU factorizations in
UPC using UPCBLAS. The developed codes are experimentally
evaluated and compared to the MPI versions using ScaLAPACK.
Parallel solvers of equations are present in many parallel numer-
ical applications and they have been traditionally developed in
MPI. This work shows that UPCBLAS can be considered as a
good alternative to the MPI-based libraries for increasing the
productivity of numerical application developers.

Index Terms—PGAS, UPC, UPCBLAS, ScaLAPACK, Matrix
Computations, Cholesky, LU

I. INTRODUCTION

The popularity of Partitioned Global Address Space (PGAS)
languages has increased during the last years thanks to their
good trade-off between programmability, because of offering
a global memory shared by all threads, and performance,
through an efficient exploitation of data locality. These lan-
guages can take advantage of shared memory support when it
exists, and they rely on the partitioned nature of the address
space to be efficiently used on distributed memory machines.
Thus, they are specially attractive on hierarchical architectures
such as multicore clusters. Some examples of PGAS languages
are Unified Parallel C (UPC) [1], Co-Array Fortran [2] or
Titanium [3].

UPC is an extension of ANSI C for parallel computing that
follows the PGAS paradigm. There are two main advantages
of using UPC instead of the conventional message-passing
programming model, such as MPI. First, the shared address
space simplifies programming as programmers can use dis-
tributed arrays which can be directly accessed by all threads.
Second, the global memory allows the efficient use of one-
sided communications. Most of the recent works related to
UPC are focused on demonstrating that UPC can outperform
MPI thanks to one-sided communications [4]–[7].

The importance of designing high performance algorithms
for solving linear systems is motivated by many scientific

and engineering applications. The whole process of solving
a non-triangular system of equations has not been studied in
UPC. However, some previous UPC works addressed some
parts of this issue by taking advantage of one-sided commu-
nications but without exploiting the mechanisms provided by
the language to facilitate parallel programming. For instance,
different data distributions are studied in [8] for triangular
solvers by distributing the matrix data among the private
memories of all threads. Therefore, the properties of the global
shared memory are not exploited in this work. Husband and
Yelick [9] undertook the parallelization of the LU factorization
using own-designed structures to store the matrix data in
shared memory. Thus, in order to use this implementation,
UPC programmers would be forced to deal with these ad-
hoc structures that represent the distributed data. Therefore,
as in the MPI-based libraries, users should be aware of
the appropriate local indexes to use in each process, which
increases the complexity of developing parallel codes [10] and
does not take advantage of the ease of programming offered
by shared arrays in UPC.

This paper presents the implementation of solvers of equa-
tions in UPC through Cholesky and LU factorizations. These
implementations are based on UPCBLAS [11], a parallel
numerical library with a relevant subset of BLAS routines [12],
[13] implemented for UPC. This library increases the pro-
ductivity of programmers by using shared arrays to represent
distributed vectors and matrices and thus exploiting the pro-
grammability of the PGAS paradigm. UPCBLAS also takes
advantage of one-sided communications to perform the parallel
routines and even automatically optimizes them according
to the hardware characteristics of the underlying machine.
Thus, UPCBLAS and, consequently, the solvers presented in
this work, preserve the two main advantages of the PGAS
languages: one-sided communications and usability.

The rest of the paper is organized as follows. Section II
provides an overview of UPCBLAS, as background for the
following sections. Sections III and IV describe the algorithms
to solve systems of equations using Cholesky and LU fac-
torizations, respectively. Section V presents the analysis of
the experimental results obtained on an IBM supercomputer
(Carver), as well as their comparison with the ScaLAPACK
library [14]. Finally, conclusions are discussed in Section VI.



II. OVERVIEW OF THE UPCBLAS LIBRARY

As was previously mentioned, UPCBLAS is a parallel nu-
merical library built on top of standard UPC which provides a
version of the BLAS routines that follows the PGAS paradigm.
All PGAS languages, and thus UPC, expose a global shared
address space to the user which is logically divided among
threads, so each thread is associated or presents affinity to
a part of the shared memory. Moreover, UPC also provides
a private memory space per thread for local computations.
Therefore, each thread has access to both its private memory
and to the whole global space, even the parts that do not
present affinity to it. Typically the accesses to remote data
will be much more expensive than the accesses to local data
(i.e. accesses to private memory and to shared memory with
affinity to the thread).

Shared arrays are employed to implicitly distribute data
among all threads, as shared arrays are spread across the
threads. The syntax to declare a shared array A is: shared
[BLOCK_FACTOR] type A[N], being BLOCK_FACTOR
the number of consecutive elements with affinity to the same
thread, type the datatype, and N the array size. It means
that the first BLOCK_FACTOR elements are associated to
thread 0, the next BLOCK_FACTOR ones to thread 1, and so
on. Thus, the element i in the array has affinity to thread
b i
BLOCK FACTORcmod(THREADS), being THREADS

the total number of threads in the UPC execution.
With regard to the design of a parallel numerical library,

the main difference between UPC and a message-passing
paradigm (such as MPI) is that the latter does not provide any
structure in the language to deal with vectors and matrices
distributed among the processes. Therefore, developers of
message-passing numerical libraries have to create additional
structures to represent distributed vectors and matrices. Both
the new structures and the distribution of the matrices among
the processes are concepts that pose an important challenge for
most of the users of parallel numerical libraries (researchers
and engineers from different areas), as can be seen in the
results of the survey presented in [10]. In contrast, UPCBLAS
makes use of shared arrays, significantly improving the ease
of use of the library and thus the productivity of numerical
applications developers. However, the use of UPC shared
arrays to distribute vectors and matrices limits the possible
types of distribution to 1D. Experimental results in [11]
demonstrated that, for some BLAS routines, the 2D distri-
bution obtains better performance than 1D. As will be seen
in the experimental evaluation in Section V, this limitation
also influences the performance of the solvers of equations.
Nevertheless, the implementations based on UPCBLAS offer
a good trade-off between programmability and performance.

The BLAS3 matrix-matrix product will be used in
this section to summarize the design and implementation of
UPCBLAS, as most of the algorithms presented in Sections III
and IV are based on this routine. In order to facilitate the
adoption of UPCBLAS among PGAS programmers the
syntax of these functions is similar to the standard collectives

library [1]. For instance, the syntax of the matrix-matrix
product in double precision (C = α ∗A ∗B + β ∗ C) is:

upc_blas_dgemm(UPCBLAS_DIMMDIST dimmDist,
int block_size, int sec_block_size,
UPCBLAS_TRANSPOSE transposeA,
UPCBLAS_TRANSPOSE transposeB, int m, int
n, int k, double alpha, shared void *A,
int lda, shared void *B, int ldb, double
beta, shared void *C, int ldc);

being A, B and C mxk, kxn and mxn matrices, respectively;
and alpha and beta the scale factors for A and C, re-
spectively. Most of the parameters have the same name and
meaning than in sequential BLAS [12]. The only differences
are that the pointers that represent the input and output matri-
ces point to shared memory and that there are some additional
parameters (the first three ones) to specify the distribution of
the matrices. dimmDist is an enumerate value to specify if
the output matrix is distributed by rows or by columns. If C is
distributed by rows then block_size indicates the number
of consecutive rows with affinity to the same thread. In this
case the algorithm implemented by the routine follows the
structure shown in Figure 1. In order to perform its sequential
partial matrix-matrix product each thread only needs to access
the same rows of A than those of C with affinity to that thread,
but all the elements of B. Therefore, as matrices A and C must
have the same distribution, block_size is also related to
A. sec_block_size specifies the number of consecutive
elements of B with affinity to the same thread.

Fig. 1: UCBLAS matrix-matrix product (gemm) using a row
distribution for matrix C

In comparison, Figure 2 describes the behavior of the
UPCBLAS matrix-matrix product when the output matrix is
distributed by columns. In this case, each thread needs to ac-
cess the whole matrix A but only the same columns of B than
those of C with affinity to that thread. Thus, block_size
defines the distribution of C and B, and sec_block_size



Fig. 2: UCBLAS matrix-matrix product (gemm) using a col-
umn distribution for matrix C

is related to A.
This example illustrates the ease of use of UPCBLAS

as programmers only need to know how to work with the
UPC shared arrays and their block factor in order to exploit
the functionalities of the library. Shared arrays are implicitly
partitioned across threads, thus the complex steps of declaring
and distributing vectors and matrices required by the MPI-
based libraries are avoided.

III. CHOLESKY SOLVER

The Cholesky factorization is mainly used for the numerical
solution of linear equations A ∗X = B when A is symmetric
and positive definite. The system can be solved by first
computing the Cholesky factorization A = LLT (being L a
lower triangular matrix with strictly positive diagonal entries),
then solving L∗Y = B for Y , and finally solving LT ∗X = Y
for X . A similar approach is applied if the system has the form
X ∗A = B.

Two different algorithms by blocks have been studied to
implement the Cholesky solver. They operate on submatrices
instead of on individual matrix entries. They are very adequate
for parallel numerical codes as they are based on BLAS3
routines, which obtain good scalability.

As explained in the previous section, UPCBLAS is limited
to the distributions available for shared arrays in UPC which,
up to now, are 1D. Thus, users can choose between the
block-cyclic distribution by rows or by columns. For the sake
of simplicity, all the algorithms in this paper will only be
explained for a block-cyclic distribution by rows, such as the
one shown in Figure 3, where Aij are submatrices. The column
distribution versions can be easily inferred.

As UPCBLAS is focused on increasing programmability,
the syntax of all its functions is very similar to the sequential
BLAS. Furthermore, UPCBLAS functions work with arrays
as in the sequential numerical libraries instead of with ad-
hoc data structures as in the MPI-based ones. Therefore, the

Fig. 3: Example of input matrix distributed by rows in a block-
cyclic way

first approach for the Cholesky factorization using UPCBLAS
is derived from the sequential algorithm available in the
LAPACK library [15]. Figure 4 shows this approach, which is
based on the matrix-matrix product of general matrices (gemm
routine). The input matrix A is distributed in NB blocks of
BS rows. The input/output matrix B (X overwrites B) does
not have to follow the same distribution. Taking into account
the experimental results shown in [11], B is distributed by
columns if the system is A ∗ X = B, and by rows if it is
X ∗A = B, in order to obtain the best performance.

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Ai,i = Ai,i −Ai,0..i−1 ∗AT
i,0..i−1 → syrk

Sequential Cholesky Factorization of Ai,i

end
Ai+1..N,i =
Ai+1..N,i −Ai+1..N,0..i−1 ∗AT

i,0..i−1 → gemm
Solve Z ∗AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z

end
Solve Y ∗AT = B → trsm
Solve X ∗A = Y → trsm

Fig. 4: Algorithm based on parallel gemm for the Cholesky
solver

The algorithm consists of a loop in which two operations
per iteration are carried out in parallel using UPCBLAS: trsm
(triangular solver) and gemm (matrix-matrix product). Besides,
there is one thread in each iteration that must perform some
additional computations only accessing data stored in its local
memory: the syrk routine (product of a symmetric matrix
by its transpose) and the sequential Cholesky factorization.
The syrk routine is performed by calling a sequential BLAS
routine. However, no routine could be used to perform the
sequential Cholesky factorization of one block. Although
LAPACK has a routine to perform this factorization, it only
works if matrices have their elements ordered in a column-wise
way, the common format in Fortran. As UPCBLAS follows
the UPC and ANSI C format (row ordering of elements),



transposing the matrix in each block is the only way to use
the LAPACK interface, which was obviously discarded due to
its high overhead. An own row-wise C routine for the sequen-
tial Cholesky factorization was therefore implemented. This
routine was parallelized for multicore architectures (shared
memory) using OpenMP directives.

After the loop, the lower triangular part of A stores the
entries of L, which can be directly used as input of the
UPCBLAS triangular solvers to solve the system of equations.

Two data dependencies arise when studying this algorithm:
• No thread can start the parallel trsm in iteration i before

the thread with affinity to the block Ai,i has finished the
Cholesky factorization of this block.

• No thread can start the parallel gemm in iteration i before
the thread with affinity to the block Ai−1,i−1 has finished
its part of the parallel trsm of the previous iteration.

There are not dependencies between the parallel gemm and
the sequential computations in each iteration. Thus, the proper
mechanisms of synchronization have been used in order to
parallelize all these computations.

The second approach developed for implementing the
Cholesky solver using UPCBLAS is an adaptation of the algo-
rithm used by ScaLAPACK [14] and is described in Figure 5.
The UPCBLAS syrk and trsm routines are used for the
parallelization. Note that the syrk routine was later included
in UPCBLAS as a result of this work. The main advantage
of this algorithm is that there are less sequential computations
than in the previous one (the sequential syrk per iteration is
avoided). These computations have not disappeared but they
are included in the parallel syrk.

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Sequential Cholesky Factorization of Ai,i

end
Solve Z ∗AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z
Ai+1..N,i+1..N =
Ai+1..N,i+1..N −Ai+1..N,i ∗AT

i+1..N,i → syrk

end
Solve Y ∗AT = B → trsm
Solve X ∗A = Y → trsm

Fig. 5: Algorithm based on parallel syrk for the Cholesky
solver

Two dependencies appear in this algorithm too:
• No thread can start the parallel trsm in iteration i before

the thread with affinity to the block Ai,i has finished the
sequential Cholesky factorization of this block.

• No thread can start the parallel syrk in iteration i before
all threads have finished the parallel triangular solver in
that iteration.

The main drawback of this algorithm is that dependencies
are stronger and closer than in the first one. Therefore, the
overhead due to synchronizations increases.

In both algorithms the selection of NB and BS is key
to obtain good performance. The more blocks the matrix
is divided in, the more computations can be simultaneously
performed, but the more synchronizations are needed too.

IV. LU SOLVER

If the input matrix A does not fulfill the requirements of
the Cholesky factorization, the LU decomposition can be used
instead. In this case matrix A is decomposed in two matrices
L and U , lower and upper triangular, respectively. Thus, A
can be exchanged by L ∗ U and the system of equations can
be solved in two steps. First, L ∗ Y = B is solved and then
U ∗X = Y .

Figure 6 shows the basic block algorithm based on BLAS3
routines to perform the parallel LU solver. It is derived from
the algorithms included in LAPACK and ScaLAPACK. In
this case the loop computes the LU factorization, so L and
U are stored in the lower and upper triangular parts of A,
respectively. Then, the first final trsm performs the triangular
solver with the lower part of the matrix and the second trsm
uses the upper one.

This algorithm is mainly based on the UPCBLAS imple-
mentations of trsm and gemm. Besides, as for the Cholesky
case, a C version of the LU factorization had to be devel-
oped, as the available libraries could not work with row-wise
matrices. This LU implementation is also parallelized using
OpenMP directives.

The only dependency among the computations performed
by different threads is that no thread can start the parallel
trsm in iteration i before the thread with affinity to the
block Ai,i has finished the LU factorization of this block.
The structure of this algorithm is quite similar to the one
described in Figure 5. However, this algorithm should obtain
better scalability as no thread needs any remote data of the
output of the parallel trsm and thus the second dependency
present in the algorithm of Figure 5 is avoided. Besides, the
LU algorithm has been optimized by moving forward the
sequential computations of the next iteration, performing them
in parallel with the gemm routine and thus minimizing the
impact of this overhead.

Depending on the characteristics of the input matrix A, the
algorithm shown in Figure 6 could lead to inconsistencies
because of dividing by zero within the sequential LU factor-
izations. Partial pivoting must be performed in order to avoid
this issue and the system has the form P ∗L∗U ∗X = P ∗B,
where P is a permutation matrix with exactly one entry equal
to one in each row and column.

The algorithm for solving this system is shown in Figure 7.
If the matrix is, as in the example, distributed by rows (see
Figure 3), the pivoting is performed by columns so that all the
swaps of columns can be parallelized. P is a vector of size
N stored in shared memory and distributed among threads
according to BS. It is used to store the information about
the columns that must be swapped in each iteration. This
information is computed before the LU factorization and it is



for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Sequential LU Factorization of Ai,i..N

end
Solve Z ∗AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z
Ai+1..N,i+1..N =
Ai+1..N,i+1..N −Ai+1..N,i ∗Ai,i+1..N → gemm

end
Solve A ∗ Y = B → trsm
Solve A ∗X = Y → trsm

Fig. 6: Algorithm for the LU solver without pivoting

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Pi = Partial P ivoting of Ai,i..N

Swap Ai,i..N according to Pi

Sequential LU Factorization of Ai,i..N

end
Swap A0..N,i..N according to Pi

Solve Z ∗AT
i,i = Ai+1..N,i → trsm

Ai+1..N,i = Z
Ai+1..N,i+1..N =
Ai+1..N,i+1..N −Ai+1..N,i ∗Ai,i+1..N → gemm

end
Swap B according to P
Solve A ∗ Y = B → trsm
Solve A ∗X = Y → trsm

Fig. 7: Algorithm for the LU solver with partial pivoting by
columns

available to all threads as the vector is stored in shared mem-
ory. Next, all threads have to swap the elements of the rows
with affinity to them according to Pi before the trsm in each
iteration. A UPC parallel swapping by columns was developed
to efficiently perform these computations. Furthermore, in this
algorithm the sequential computations of the next iterations
cannot be moved forward because the thread involved in these
computations needs to finish its part of all the previous parallel
trsm and gemm to be sure that the pivoting information is
well determined.

After the factorization, vector P contains all the information
about the pivoting. The columns of matrix B are swapped in
parallel before the final triangular solvers.

Again, the correct selection of NB and BS is key to
obtain good performance in the algorithms that use the LU
factorization.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of the algorithms
explained in Sections III and IV runtime tests were performed
on the Carver supercomputer [16] at the National Energy
Research Supercomputing Center (NERSC) of the Lawrence
Berkeley National Laboratory. This system consists of 320

nodes, each of them with 2 quad-core Intel Xeon 5550X
(Nehalem) processors (8 cores at 2.67 Ghz per node) and
24 GB of memory. The compute nodes are interconnected
by a 4X QDR InfiniBand network (32 Gbps of theoretical
effective bandwidth). As for software, the code was compiled
using Berkeley UPC 2.12.2 [17] and linked to the Intel Math
Kernel Library (MKL) version 10.2.2 [18], a library with
highly tuned BLAS routines for Intel machines. The inter-
node communications are performed through GASNet over
InfiniBand. All the tests were run using one UPC thread per
node and 8 OpenMP threads per UPC thread (one per core). As
explained in Sections III and IV, the sequential factorizations
are implemented with OpenMP support. Besides, UPCBLAS
is linked to the OpenMP multithreaded implementation of the
MKL library. The ScaLAPACK library version 1.8.0 was used
for comparison purposes.

The performance evaluation of the different algorithms was
done using weak scaling and with double precision elements.
In a weak scaling study the size of the input matrices increases
with the number of cores. As parallel algorithms with many
cores are generally used to solve problems that cannot be
performed with less resources, weak scaling allows to evaluate
the behavior of the algorithms in a more realistic scenario than
strong scaling. In this study the average computational work-
load (number of floating point operations) per thread was fixed
for all experiments. Thus, programs with perfect scalability
would obtain the same execution times for any number of cores
and the speedups are calculated as (T1/Tn) ∗ n, being T1 the
sequential execution time and Tn the parallel execution time
obtained when using n cores. All the speedups are calculated
relative to execution times obtained from the ScaLAPACK
library running with only one MPI process.

The UPC algorithms were compared with the MPI imple-
mentation using ScaLAPACK. Two experimental results were
obtained for each ScaLAPACK routine. The line labeled as
ScaLAPACK-2D shows in all the graphs the best results
obtained by the MPI routine, which are always with a 2D grid
of processes. However, as the UPC algorithms can only use 1D
data distributions, the results of ScaLAPACK using the best
1D distribution, labeled as ScaLAPACK-1D, are also shown
for comparative purposes.

As it was explained in Sections III and IV, the size of the
blocks in all the block-cyclic distributions has a significant
influence on the performance of the solvers. In order to provide
a fair comparison, all the experimental results shown were
obtained with the best block size for each routine, either for
the UPC or the ScaLAPACK routines.

Graphs in Figure 8 compare the execution times (in seconds)
and speedups of the two algorithms explained in Section III
to implement the Cholesky solver. Results with row and
column distributions are shown for both UPC algorithms.
These results indicate that the approach that parallelizes the
LAPACK algorithm, based on the parallel gemm routine, is
better than the adaptation of the ScaLAPACK one, based on
the parallel syrk routine, due to several reasons:

• The dependencies of the algorithm based on syrk are
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Fig. 8: Execution times and speedups of the UPC implementations of the Cholesky solver

 0

 200

 400

 600

 800

 1000

 1200

 1400

 16  32  64  128  256

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of cores

Cholesky solver (1200 GFLOP per thread)

Scalapack-2D
Scalapack-1D
UPC-row (based on gemm)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 16  32  64  128  256

S
p

e
e

d
u

p

Number of cores

Cholesky solver (1200 GFLOP per thread)

Scalapack-2D
Scalapack-1D
UPC-row (based on gemm)

Fig. 9: Execution times and speedups of the MPI and UPC Cholesky solvers

very strong, so more synchronizations are needed, as it
was explained in Section III.

• The implementation based on gemm has been optimized
to minimize the overhead of the sequential computations
by overlapping them with other parallel computations.
This optimization cannot be included in the other algo-
rithm because of the dependencies.

• The internal pattern of the remote accesses within the
parallel gemm obtains better performance than the pattern
within the parallel syrk.

Regarding the best algorithm (the one based on gemm) the
distribution by rows is better than the distribution by columns.
The reason is that the main part of the algorithm is performed
using the UPCBLAS version of gemm and trsm. In the distri-
bution by rows these routines follow the behavior described in
Figure 1 for a matrix product A ∗B = C, with matrix B also
distributed by rows. As all the elements in the same row have
affinity to the same thread, the accesses to one row of B only
need one call to the standard UPC function upc_memget()
per thread. In contrast, in the column distribution case matrix
A is also distributed by columns so the elements of each row
of A are stored in parts of the shared memory with affinity
to different threads (see Figure 2). Therefore, several calls to

upc_memget() per thread, with less amount of elements per
call, are necessary to access each row of A. In UPC accessing
data using large blocks is much more efficient than splitting
them in several smaller accesses.

Figure 9 shows again the results of the best UPC Cholesky
solver (the approach based on gemm by rows) and compares
them to the results obtained by the ScaLAPACK routine.
The ScaLAPACK Cholesky solver outperforms the best UPC
version for a large number of threads. The reason is that, as
explained in Sections I and II, ScaLAPACK sacrifices ease of
use and productivity for performance by using complex data
structures to be able to work with 2D distributions. Although
the UPC 1D algorithms by rows are competitive up to 64
cores, their performance decreases with larger core counts
because the blocks become very irregular (few rows and many
columns per block). Besides, the configuration of the Berkeley
UPC compiler in Carver has a maximum block factor for
the shared arrays that leads UPC not being able to use the
most appropriate block size in the distribution by rows. In
this machine the maximum block factor is 1044000 elements.
For instance, the experiment with 256 cores uses matrices of
50500x50500 elements. Thus, the maximum number of rows
that can be used in one block is 20 (1044000/50500). This
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Fig. 10: Execution times and speedups of the MPI and UPC LU solvers without pivoting
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Fig. 11: Execution times and speedups of the MPI and UPC LU solvers with partial pivoting by columns

limitation of the compiler is forcing the UPC algorithms by
rows to use more synchronizations than in the ideal scenario.
A larger maximum block factor would increase the overall
performance for the largest experiments. However, even with
these limitations, the UPC approaches were demonstrated to
be well implemented (not only the algorithms explained in this
work but also the part within UPCBLAS) as their performance
is much better than the performance of ScaLAPACK using 1D
distributions.

Figure 10 shows the experimental results for the LU solver
without pivoting. The conclusions are similar to those of the
algorithm using Cholesky based on gemm. On the one hand,
distributing matrix A by rows obtains better performance than
doing it by columns because of the behavior of the UPCBLAS
routines. On the other hand, the UPC implementation is much
more efficient than the ScaLAPACK 1D routine but less
efficient than its 2D counterpart.

Finally, execution times and speedups of the LU solver
with partial pivoting are presented in Figure 11. In order
to show an extreme scenario, the input matrix A has been
selected so that all the columns must be swapped. Regarding
the UPC version, only the performance of the distribution by
rows is presented as, from the results of Figure 10, it can

be inferred to be better than the distribution by columns.
Comparing to the UPC algorithm without pivoting, it can
be seen that pivoting decreases scalability. The reason is not
the time needed to perform the swapping (always only about
two seconds per experiment) but the fact that the sequential
computations cannot be overlapped with the parallel gemm of
the previous iteration, as explained in Section IV.

Looking at these results, if the UPC language allows mul-
tidimensional distributions in the future, it would be expected
for the algorithms explained in Sections III and IV to obtain
similar or even better performance than the ScaLAPACK ones.
In that case UPCBLAS would provide a new version that
would work with these 2D distributions without needing to
change the interface of the routines. Only additional options
to the enumerate UPCBLAS dimmdist should be specified
(see Section II). Hence, no changes to the UPCBLAS solvers
would be necessary to benefit from the 2D distributions.

VI. CONCLUSIONS

Although UPC and, in general, the PGAS programming
model provides important productivity advantages over tra-
ditional parallel programming models, most of the works that
study numerical algorithms in UPC sacrifice these advantages



for performance. This work has presented UPC implementa-
tions of solvers of equations using the Cholesky and LU factor-
izations (with and without pivoting) based on the UPCBLAS
library. All the described algorithms can be implemented as
routines to be used for numerical application developers to
parallelize their codes. Thanks to the design characteristics
of UPCBLAS (syntax similar to sequential BLAS and use
of shared arrays), all these routines would have a syntax
and use similar to the LAPACK ones. As can be inferred
from [10], programming using LAPACK routines is much
easier and faster than using the corresponding parallel versions
in ScaLAPACK. Therefore, these UPC routines would increase
the programmability of parallel numerical codes, producing
less error-prone programs and improving the productivity of
their users.

The proposed algorithms have been experimentally tested
on a multicore cluster to show their suitability and effi-
ciency for hybrid architectures (shared/distributed memory).
The obtained results were used in order to determine the most
suitable approach for the UPC solvers. On the one hand, two
algorithms were implemented for the Cholesky solver and the
experimental evaluation has determined that the best choice
is the algorithm based on the BLAS3 gemm routine. On the
other hand, the results obtained in the testbed proved that the
distribution by rows, using the largest block size allowed by
the compiler, is the most suitable for the solvers, using either
Cholesky (based on gemm) or LU factorization.

The experimental evaluation has also demonstrated that
taking into account the 1D distribution limitation imposed
by the UPC language, UPCBLAS solvers achieve good per-
formance. In fact, they obtain much better performance than
the ScaLAPACK 1D counterparts. Furthermore, although the
ScaLAPACK solvers with 2D distributions obtain the best
scalability, the experimental results have confirmed that the
approach of UPCBLAS based on shared arrays is a good
trade-off between programmability and performance. Besides,
if multidimensional distributions were allowed in UPC shared
arrays in the future, no changes would be necessary in the
UPCBLAS interface to take advantage of the 2D distributions.
In that case the algorithms presented in this work (and any
other numerical code based on UPCBLAS) could achieve
similar or even better performance than ScaLAPACK routines
without sacrificing ease of use.
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