
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 825-836 (2002)

825

Short Paper___

Performance Modeling and Evaluation of MPI-I/O

on a Cluster*

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO

AND VICTOR M. GULIAS+

Department of Electronics and Systems
+Department of Computer Science

University of A Coruña
 15071 A Coruña, Spain

E-mail: juan@udc.es

Cluster computing is an area of growing interest in search to support parallel and

distributed applications. Many of these applications are I/O intensive, and the limited
bandwidth of the I/O subsystem of the cluster is an important bottleneck that is usually
ignored. Thus, the performance of parallel I/O primitives is critical for overall cluster
performance. In this work, we characterize the performance of basic ROMIO MPI-I/O
routines on a PC cluster using the NFS and PVFS file systems. Our goal is to detect
weak spots in the use of these routines and to predict their impact on the application’s
performance.

Keywords: cluster computing, performance analysis, parallel I/O, MPI-I/O, ROMIO,

NFS, PVFS

1. INTRODUCTION

Many parallel applications require huge data sets that have to be stored on disk.
For instance, the authors have developed parallel scientific and engineering applications
in diverse areas such as fluid mechanics [1], image synthesis [2] and environmental
chemistry [3] that require efficient I/O to ensure acceptable performance. Out-of-core
computation is another typical example of intensive I/O.

MPI-I/O [4] provides a standard parallel I/O interface. The performance of the I/O
primitives depends not only on the disk and network hardware, but also on the underlying
file system. It is clear that programming portability does not mean performance port-
ability. Although an exhaustive set of experiments can be done on a cluster to assess
quantitatively the performance of the I/O subsystem, we have focused on low-level tests
to study basic MPI-I/O primitives. Our aim is to estimate I/O overheads with simple
expressions, which can help application developers to design I/O-intensive parallel pro-
grams more efficiently. Benchmark suites for MPI-I/O functions were presented in [5, 6].

Received August 31, 2001; accepted April 15, 2002.
Communicated by Jang-Ping Sheu, Makoto Takizawa and Myongsoon Park.
* This research was supported by Xunta de Galicia (Project PGIDT01-PXI10501PR).

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

826

Although the authors did not adopt any particular data model, these reports are good
starting points for deriving analytic models and developing more in-depth tests.

This work is organized as follows. In the next section, we comment on some
related works. Section 2 gives an overview of parallel I/O topics (file systems and
MPI-I/O routines). In section 3, the underlying configuration of the cluster used in the
experiments is detailed; section 4 presents experimental results and performance models
for some MPI-I/O routines, using both the standard NFS file system and PVFS, a parallel
file system for clusters. Finally, conclusions are drawn in section 5.

1.1 Related Work

Mache et al. [7] studied the parallel I/O performance of PVFS on a PC cluster using
a ray tracing application as a case study. They also compared the influence of different
disk types (IDE vs SCSI) and networks (Fast Ethernet vs Gigabit Ethernet) on I/O
performance. Taki and Utard [8] presented a straightforward port of ROMIO [9], an
MPI-I/O implementation, on PVFS. They compared typical file accesses and data
distributions of parallel applications using ROMIO, on both NFS and PVFS. In our
work, we used a new version of PVFS with specific interface to ROMIO. Neither paper
focused on specific routines from the MPI-I/O library, and they did not model the
behavior of these primitives.

In this work, we do not report the raw I/O performance of NFS and PVFS, but rather
the performance of specific ROMIO MPI-I/O primitives on both file systems, and we
intend to model them analytically. Therefore, the results presented here are user-level
oriented in order to give practical help for the development of parallel applications on
clusters.

2. BACKGROUND TOPICS

2.1 File Systems: NFS and PVFS

The most widely available remote file system protocol is the Network File System
(NFS) [10], designed by Sun Microsystems as a client-server application. It consists of
a client part that imports file systems from other machines and a server part that exports
local file systems to other machines. NFS is designed to be stateless. As there is no
state to maintain or recover, NFS can continue to operate even during periods of client or
server failures. Therefore, it is much more robust than a system that operates with a
state, although the state requests to the server increase traffic. In addition, as the number
of processors and the file size increase, the NFS server and the network are flooded with
the client requests, which is an important bottleneck. In fact, NFS was not designed for
large parallel I/O applications that require high-performance concurrent file accesses.

The Parallel Virtual File System (PVFS) [11] provides a high-performance and
scalable parallel file system, and unlike other proprietary parallel file systems, it was
developed for Linux PC clusters. PVFS spreads data out across multiple local disks in
cluster nodes. Thus, applications have multiple paths to data through the network
(which eliminates single bottlenecks in the I/O path) and multiple disks on which data is

EVALUATION OF MPI-I/O ON A CLUSTER

827

stored. PVFS consists of three components: a metadata server, which maintains
information in files and directories stored in the parallel file system; I/O servers that store
data on local files; and clients that contact these servers to store and retrieve data. The
metadata and I/O servers may be placed on dedicated resources or may be shared for
computation purposes, in order to achieve a reasonable tradeoff between I/O and
computing performance. PVFS provides multiple interfaces, including an MPI-I/O
interface via ROMIO.

2.2 MPI-I/O Routines

MPI-I/O is a standard parallel file I/O interface, part of the MPI-2 specification [4].
An MPI file is an ordered list of MPI datatypes. A view of the file defines what data are
visible to each processor. It consists of a displacement (an offset from the beginning of
the file), an elementary type (the unit of data access and positioning within a file, which
can be predefined or user-defined), and a filetype (a template for accessing the file).

Data access primitives are classified, based on the coordination, as noncollective (or
independent) and collective. Noncollective routines, MPI_File_{read|write}, involve
only one processor and an I/O request. Collective routines, MPI_File_{read|write}_all,
involve all the processors that have opened a given file, and they can perform better than
noncollective routines, because, as all the processors may coordinate, small requests may
be merged (see the discussion of collective I/O optimization given later). In addition,
MPI provides three types of positioning and, thus, three categories of data access routines:
individual file pointer routines that use a private file pointer maintained by each
processor and incremented by each read/write (they are the routines listed above); explicit
offset primitives that take an argument that defines where the data is read or written, that
is, MPI_File_{read|write}_at and the collective version {read|write}_at_all; and shared
file pointer primitives, which use a shared file pointer, MPI_File_{read|write}_shared,
and the collective {read|write}_ordered. All the enumerated routines are blocking
routines; that is, they do not return until data transfer is completed. All of them have
nonblocking counterparts, which do not wait for completion, in order to allow overlap of
I/O with computation.

ROMIO [9] is a portable implementation of MPI-I/O that works on most parallel
computers and networks of PCs/workstations, and supports multiple file systems (such as
NFS and PVFS). It is optimized for noncontiguous access patterns (using derived
datatypes), which are usually found in parallel applications, in order to reduce the effect
of high I/O latency. Specifically, it implements data sieving and collective I/O
optimizations [12]. Data sieving makes large I/O contiguous accesses and extracts in
memory the data really needed, instead of making several small, noncontiguous accesses.
Collective I/O optimization performs I/O in two stages: in the first one (the I/O stage),
processors perform I/O for the merged request and, in the second one (the communication
stage), processors redistribute data among themselves to achieve the desired distribution
(this is for reading data; the order of the stages is reversed for writing). A proposal to
improve performance of collective I/O of ROMIO on PVFS is presented in [13].

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

828

3. CLUSTER CONFIGURATION

Our PC cluster (see Fig. 1) consists of 24 nodes; one of them acts as a front-end
providing services to the rest of the nodes (NFS, for instance). Each node has one AMD
K6 processor and two Fast Ethernet interfaces, except for the front-end, which is a dual
Pentium-II with an additional network interface attached to the departmental network.
Two different networks separate IP administrative traffic from application traffic (MPI
programs, for instance), and it is possible to combine both networks into a single virtual
network to achieve higher throughput, by bonding both adapters (channel bonding).
The switches are 24-port 3Com SuperStack II 3300 units stacked in groups of two with a
1Gbit/s link. They can be managed directly from a console or, once they have an IP
address assigned by SNMP, from a telnet session or from an HTML client with Java
support. From the management point of view, the switches are crucial devices,
especially with Ethernet, where they can be integrated with external networks. Switches
are suitable points for monitoring because only they can know the real status of physical
links, and because having them probe the nodes avoids extra traffic from a management
workstation. In our case, switches implement RMON monitoring: instead of directly
managing individual nodes from the front-end or an external workstation, most of the
work is done by the switch itself, which is then queried by SNMP from the workstation,
thus reducing network traffic and complexity. Further information about the cluster
configuration can be found in [14].

Fig. 1. PC cluster configuration.

EVALUATION OF MPI-I/O ON A CLUSTER

829

For illustrative purposes, we have modeled point-to-point latency (MPI_Send) in the
cluster as T(n)=206 + 0.106n µs, broadcast latency (MPI_Bcast) as T(n, p) = 206log2p +
(0.105log2p)n µs and reduction latency (MPI_Reduce, specifically sum reduction of
doubles) as T(n,p) = (435log2p − 103) + (0.185log2p)n µs, where n is the message size in
bytes and p the number of processors. As a comparison, in [15] we obtained the
following results for the Fujitsu AP3000 multicomputer, composed of UltraSparc-II
processors connected via a high-speed communication network (AP-Net): T(n) = 69 +
0.0162n µs for point-to-point, T(n,p) = 69log2p + (0.0162log2p)n µs for broadcast, and
T(n, p) = (90log2p − 15) + (0.0222log2p)n µs for reduction. As the AP-Net is a costly
dedicated network, message-passing latencies in the cluster Fast Ethernet are much
higher.

4. I/O EXPERIMENTAL RESULTS

4.1 Parallel I/O Performance Model

We have based our work on well-known message-passing communication mod-
els [15] with the aim of proposing the following simple model for parallel I/O operations:
T(n, p) = K(p)n, where T(n, p) is the execution time of the operation (in seconds), p is the
number of processors, n is the file size (in MB), and K(p) is the I/O time per data unit (in
s/MB). Additional performance metrics (such as bandwidths) can be easily derived
from this model. As we will show in sections 4.3 and 4.4, usually K(p) = k/p or K(p) =
k/log2p. We have not considered a “startup” time parameter in this model (this would be
the time it takes to perform an I/O operation on an empty file) because its cost is negligi-
ble in our framework of large files, which are our target for improving performance in
real applications.

4.2 Experimental Conditions

We designed our own I/O tests. They were repeated with different file sizes (from
64KB to 32MB) and different numbers of processors. Timing outliers were taken into
account to obtain accurate measures. As each test was repeated several times in a loop,
a barrier was included to avoid a pipelined effect, where some processors might start the
next call to the I/O operation even before all the processors have finished the current
operation. The routine MPI_File_sync, which performs an I/O flush, was also used at
appropriate points in the tests to avoid reads/writes from intermediate memory levels that
could distort the performance results. The parameter K(p) of the model was derived
from a least-squares fit of T against n and p (from p = 2) using the minimum times
obtained in the tests.

We installed NFS v3 and PVFS v1.5.0 under Debian Linux (kernel 2.2.18). We
used ROMIO v1.0.3 with the MPI implementation MPICH v1.2.1 [16]. In practice, it is
more usual to use an implicit file pointer than an explicit offset in I/O operations; thus,
we discarded this set of primitives in our experiments. Regarding operations with
shared file pointers, they involve serialization ordering (not deterministic for
noncollective primitives), which is only desirable in some cases (for instance, to
implement a log file of a parallel program), and is inappropriate for exploiting parallelism

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

830

in typical I/O-intensive applications. Moreover, the current version of ROMIO does not
support shared file pointers on PVFS. Regarding nonblocking I/O primitives, it is
difficult to quantify the global performance because it depends on the computation that
can be performed concurrently with the I/O operation in a particular application.

In conclusion, we only focused on blocking I/O routines (both collective and
noncollective) that use individual file pointers. We also considered in our experiments
two file access patterns commonly found in parallel applications: contiguous or block
access and interleaved or cyclic access.

4.3 NFS Performance

Fig. 2 shows some experimental results for the MPI-I/O routines obtained by using
NFS and fixing p = 8 in the first graph and n = 16MB in the second one (some graphs
presented in this paper use a log scale on the Y axis to improve readability). We
experimentally observed that all the primitives under evaluation (except for interleaved
access with collective primitives) did not scale using NFS, in the sense that the read/write
latencies did not decrease as the number of processors increased. Latencies were even
worse when more processors were employed; see, for instance, interleaved access using
the noncollective routines shown in the second graph of Fig. 2, where the latency of the
interleaved write shown exceeds the limit of the graph from p = 4. Thus, it was not
worth modeling the routines that did not scale to the number of processors. We
obtained the following models for interleaved access using collective I/O primitives:
Tread-all = (1.7045/p)n s, Twrite-all = (2.0048/log2p)n s.

Fig. 2. Measured MPI-I/O latencies on NFS for different file sizes (left) and number of processors

(right) (cont.: contiguous access; int.: interleaved access).

Regarding contiguous access, there is not much difference between collective and
noncollective primitives. As expected, the collective optimizations described in section
2.2 only affected interleaved access.

EVALUATION OF MPI-I/O ON A CLUSTER

831

4.4 PVFS Performance

In the PVFS tests, 8 nodes in the cluster were configured as I/O servers, and one
node was dedicated exclusively as a metadata server. Unlike the NFS results, all the
primitives analyzed speeded up contiguous I/O using PVFS. After curve fitting, we
obtained the following results: Tread = (0.1524/p)n s, Tread-all = (0.1570/p)n s, Twrite =
(0.0790/log2p)n s, Twrite-all = (0.0773/log2p)n s. As in case of NFS, for a contiguous
access, the collective and noncollective routines exhibited practically the same behavior.

Regarding interleaved access, only collective primitives speeded up I/O (from p = 2),
and they had the same complexity as their contiguous counterparts: Tread-all = (1.3222/p)n
s, Twrite-all = (0.7327/log2p)n s. Although collective I/O was optimized for noncontiguous
accesses, note that the constant of the models increased by approximately one order of
magnitude with respect to contiguous access.

Fig. 3. Measured (meas.) and estimated (est.) MPI-I/O latencies on PVFS for different file sizes,

using contiguous access (left) and interleaved access (right).

Fig. 4. Measured (meas.) and estimated (est.) MPI-I/O latencies on PVFS for different number of
processors, using contiguous access (left) and interleaved access (right).

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

832

Fig. 5. Measured MPI-I/O latencies on PVFS for different file sizes (left) and number of processors

(right) (cont.: contiguous access, int.: interleaved access).

Fig. 3 depicts measured and estimated (where applicable) latencies for p = 8, using
contiguous access in the first graph and interleaved access in the second one. The same
results are presented in Fig. 4, for different numbers of processors and a file size of
16MB. In order to compare contiguous vs interleaved latencies, the two graphs of Fig.
5 show the measured results of both kinds of accesses, for p = 8 and n = 16MB,
respectively. It can be observed from the latter graph that, although the noncollective
routines did not scale for an interleaved access, their latencies were lower than those of
the corresponding collective primitives for a small number of processors (typically, 2 or
4). However, as p increased, latencies improved through the use of collective primitives
(this also happened with NFS; see the interleaved read shown in the second graph of Fig.
2). It seems that the overhead of collective optimization in an interleaved access is
greater than the benefit of the own optimization for a small value of p.
Finally, we found that performance tended to degrade for p > 12, due to the overlap of
I/O servers and clients, which shared the same nodes, as the number of clients increased.

4.5 Putting it All Together

Table 1 summarizes the complexity of the models of each primitive, for each file
system and access pattern. The empty entries correspond to the routines that do not
scale. Performance was better for the modeled read routines, O(1/p), than for the write
routines, O(1/log2p) although the difference was more pronounced in NFS than in PVFS.

Table 1. Model complexity of MPI-I/O routines.

NFS PVFS
MPI-I/O Routine

Contiguous Interleaved Contiguous Interleaved

MPI_File_read ____ ____ O(1/p) ____

MPI_File_write ____ ____ O(1/log
2
p) ____

MPI_File_read_all ____ O(1/p) O(1/p) O(1/p)

MPI_File_write_all ____ O(1/log
2
p) O(1/log

2
p) O(1/log

2
p)

EVALUATION OF MPI-I/O ON A CLUSTER

833

Fig. 6 compares the measured read performance using NFS and PVFS, for p = 8 in
the first graph and n = 16MB in the second one. The same results are presented for the
write operation in Fig. 7 (some noncollective interleaved write results in NFS do not
appear because they exceed the limit of the graph). PVFS clearly outperformed NFS
although the improvement was greater for write than for read; see, for instance, the
latency curves of NFS/PVFS contiguous access for read (right graph of Fig. 6) and write
(right graph of Fig. 7). Improvement can also be easily observed for collective
interleaved access by comparing the corresponding models for read/write under NFS and
PVFS.

Fig. 6. Measured MPI-I/O read latencies on NFS and PVFS for different file sizes (left) and number
of processors (right) (cont.: contiguous access, int.: interleaved access).

Fig. 7. Measured MPI-I/O write latencies on NFS and PVFS for different file sizes (left) and num-
ber of processors (right) (cont.: contiguous access, int.: interleaved access).

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

834

5. CONCLUSIONS

Characterization of the I/O overhead is very important for the development of
I/O-intensive parallel codes. In this work, we have presented a comprehensive study of
basic MPI-I/O primitives on a PC cluster based on the NFS and PVFS file systems. The
results reported here can help application developers tune the file system configuration
and select the best I/O routine in order to improve I/O performance.

I/O primitives can be more accurately modeled by defining different functions for
different file size intervals. Nevertheless, for the sake of generalization, we found it
more interesting to show the global functions that have been experimentally proved to
have reasonable accuracy. They also provide a clearer overview of the I/O subsystem
behavior.

In general, ROMIO MPI-I/O routines do not scale using NFS. It is clear that NFS
was not designed for parallel I/O. We found that, in many cases, it was better to use
POSIX read/fread and write/fwrite routines directly (which have an easier interface, and
are widely known to programmers) to achieve even better performance than could be
achieved using the corresponding MPI-I/O primitives. A file system specifically
designed for parallel I/O (such as PVFS) is, therefore, necessary to speed up MPI-I/O
primitives, as we have experimentally shown. Although ROMIO is optimized for
noncontiguous accesses using collective primitives, the overhead of these optimizations
should be reduced.

Network bandwidth is another key parameter in parallel I/O. We have found that
our Fast Ethernet network limits I/O performance from a certain number of processors.
Thus, faster networks (e.g. Myrinet, Gigabit Ethernet, SCI), should be considered in large
cluster configurations when it is critical to achieve good parallel I/O performances for big
files.

REFERENCES

1. M. Arenaz, R. Doallo, J. Touriño, and C. Vazquez, “Efficient parallel numerical
solver for the elastohydrodynamic Reynolds-Hertz problem,” Parallel Computing,
Vol. 27, 2001, 1743-1765.

2. E. J. Padron, M. Amor, J. Touriño, and R. Doallo, “Hierarchical radiosity on
multicomputers: a load-balanced approach,” in Proceedings of 10th SIAM
Conference on Parallel Processing for Scientific Computing, 2001.

3. D. E. Singh, M. Arenaz, F. F. Rivera, J. D. Bruguera, J. Touriño, R. Doallo, M. R.
Mendez, J. A. Souto, and J. J. Casares, “Some proposals about the vector and parallel
implementations of STEM-II,” C. Ibarra-Berastegi, C. A. Brebbia, and P. Zannetti
eds., Development and Application of Computer Techniques to Environmental
Studies VIII, WIT Press, Southampton, 2000, pp. 57-66.

4. Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
Interface, 1997; http://www.mpi-forum.org.

5. D. Lancaster, C. Addison, and T. Oliver, “A parallel I/O test suite,” in Proceedings
of 5th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI’98, LNCS 1497,
1998, pp. 36-43; benchmark suite available at http://www.ecs.soton.ac.uk/~djl/

EVALUATION OF MPI-I/O ON A CLUSTER

835

MPI-IO/mpi-io.html.
6. Pallas GmbH, Pallas MPI Benchmarks - PMB, Part MPI-2, 2000; version 2.2

available at http://www.pallas.de.
7. J. Mache, J. Bower-Cooley, R. Broadhurst, J. Cranfill, and C. Kirkman IV, “Parallel

I/O performance of PC clusters,” in Proceedings of 10th SIAM Conference on
Parallel Processing for Scientific Computing, 2001.

8. H. Taki and G. Utard, “MPI-IO on a parallel file system for cluster of workstations,”
in Proceedings of 1st IEEE International Workshop on Cluster Computing, 1999, pp.
150-157.

9. R. Thakur, E. Lusk, and W. Gropp, User’s Guide for ROMIO: a High-Performance,
Portable MPI-IO Implementation, 1998; http://www.mcs.anl.gov/romio.

10. Sun Microsystems, NFS: Network File System v3 Protocol Specification, 1993.
11. P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, ”PVFS: a parallel file

system for Linux clusters,” in Proceedings of 4th Annual Linux Showcase and
Conference, 2000, pp. 317-327; http://www.parl.clemson.edu/pvfs.

12. R. Thakur, E. Lusk, and W. Gropp, “Data sieving and collective I/O in ROMIO,” in
Proceedings of 7th Symposium on the Frontiers of Massively Parallel Computation,
1999, pp. 182-189.

13. J. Ilroy, C. Randriamaro, and G. Utard, “Improving MPI-I/O performance on PVFS,”
in Proceedings of 7th International Euro-Par Conference, LNCS 2150, 2001, pp.
911-915.

14. M. Barreiro and V. M. Gulias, “Cluster setup and its administration,” R. Buyya ed.,
High Performance Cluster Computing, Architectures and Systems, Prentice-Hall,
1999, pp. 48-67.

15. J. Touriño and R. Doallo, “Characterization of message-passing overhead on the
AP3000 multicomputer,” in Proceedings of 30th International Conference on
Parallel Processing, ICPP’01, 2001, pp. 321-328.

16. W. Gropp and E. Lusk, User’s Guide for MPICH, a Portable Implementation of MPI,
2000; http://www.mcs.anl.gov/mpi/mpich.

Jacobo Barro received the B.S. degree in Computer Science from the University of
A Coruña, Spain, in 2001. He is currently a senior software engineer in Softgal S.A., a
software firm in A Coruña. His main research area is cluster computing.

Juan Touriño is an associate professor of Computer Engineering at the University
of A Coruña, where he earned the B.S., M.S. and Ph.D. degrees in Computer Science.
His major research interests include performance evaluation of supercomputers, parallel
algorithms and applications, parallelizing compilers and cluster/grid computing. He is a
member of the ACM and IEEE Computer Society.

Ramon Doallo is a professor of Computer Engineering in the Department of Elec-
tronics and Systems at the University of A Coruña. He received the B.S., M.S. and
Ph.D. degrees in Physics from the University of Santiago de Compostela, Spain. He has

JACOBO BARRO, JUAN TOURIÑO, RAMON DOALLO AND VICTOR M. GULIAS

836

extensively published in the areas of computer architecture and parallel and distributed
computing. He is a member of the IEEE.

Victor M. Gulias received the B.S., M.S. and Ph.D. degrees in Computer Science
from the University of A Coruña, Spain. He has been a lecturer in the Department of
Computer Science of this university since 1994. His current research interests are clus-
ter computing and novel techniques for the development of concurrent and distributed
applications, such as distributed functional programming and design patterns for distrib-
uted systems.

