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Abstract. There is a class of sparse matrix computations, such as direct
solvers of systems of linear equations, that change the fill-in (nonzero en-
tries) of the coefficient matrix, and involve row and column operations
(pivoting). This paper addresses the problem of the parallelization of
these sparse computations from the point of view of the parallel lan-
guage and the compiler. Dynamic data structures for sparse matrix stor-
age are analyzed, permitting to efficiently deal with fill-in and pivoting
issues. Any of the data representations considered enforces the handling
of indirections for data accesses, pointer referencing and dynamic data
creation. All of these elements go beyond current data-parallel compi-
lation technology. We propose a small set of new extensions to HPF-2
to parallelize these codes, supporting part of the new capabilities on a
runtime library. This approach has been evaluated on a Cray T3E, im-
plementing, in particular, the sparse LU factorization.

1 Introduction

Irregular computations, where data-access patterns and workload are not known
at compile time, appear profusely on scientific and engineering applications. An
approach to handle such computations is based on extending a data-parallel lan-
guage with new constructs suitable to express non-structured parallelism. With
this information, the compiler can perform at compile time a number of optimiza-
tions, usually embedding the rest of them into a runtime library. In Fortran D
[12], the programmer can specify a mapping of array elements to processors using
another array. Vienna-Fortran [22] lets programmers define functions to specify
irregular distributions. HPF-2 [15,16] provides a generalized block distribution
(GEN-BLOCK), where the contiguous array partitions may be of different sizes,

? This work was supported by the Ministry of Education and Science (CICYT) of
Spain (TIC96-1125-C03), by the Xunta de Galicia (XUGA20605B96), by the Euro-
pean Union (BRITE-EURAM III BE95-1564), by the Human Capital and Mobility
programme of the European Union (ERB4050P1921660), and by the Training and
Research on Advanced Computing Systems (TRACS) at the Edinburgh Parallel
Computing Centre (EPCC)

S. Chatterjee (Ed.): LCPC’98, LNCS 1656, pp. 230–246, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



HPF-2 Support for Dynamic Sparse Computations 231

and an indirect distribution (INDIRECT), where a mapping array is defined to
specify an arbitrary assignment of array elements to processors.
A different approach is based on runtime techniques, that is, the non-struc-

tured parallelism is captured and managed fully at runtime. These techniques
automatically manage programmer-defined data distributions, partition loop it-
erations, remap data and generate optimized communication schedules. Most of
these solutions are based on the inspector-executor paradigm [18,7].
Current language constructs and the supportive runtime libraries are insuffi-

ciently developed, leading to low efficiencies when they are applied to a wide set
of irregular codes. In the context of sparse computations, we found useful to in-
form the compiler not only about the data distribution, but also about how these
data are stored in memory. We will call distribution scheme the combination of
these two aspects (data structure + data distribution). We have developed and
extensively tested a number of pseudo-regular distribution schemes for sparse
problems, which combines natural extensions of regular data distributions with
compressed data storages [2,19,20,21]. These distribution schemes can be incor-
porated to a data-parallel language (HPF) in a simple way.
The above mentioned distribution schemes are faced to static sparse prob-

lems. In this paper we discuss data structures and distributions in the context
of dynamic sparse matrix computations, involving fill-in and pivoting opera-
tions. Direct methods for solving sparse systems of linear equations, for instance,
present this kind of computations. Factorization of the coefficient matrix may
produce new nonzero values (fill-in), so that data structures must consider the
inclusion of new elements at runtime. Also, row and/or column permutations of
the coefficient matrix are usually accomplished to assure numerical stability and
limit fill-in. All these features make such sparse computations hard to parallelize.
The rest of the paper is organized as follows. Section 2 discusses the dynamic

data distributions schemes we have tested to implement efficient parallel sparse
codes involving pivoting and fill-in. Specifically, a direct method for the LU
factorization is taken as a working example. Section 3 describes our proposal
to extend HPF-2 for considering the above dynamic distributions. Experimental
results validating our approach are presented in Section 4.

2 Sparse Data Structures and Distributions

2.1 Sparse Data Structures

Two different approaches may be considered to represent a sparse matrix: static
and dynamic data structures. Static data structures are the most used in Fortran
codes. Common examples are Compressed Row and Column Storages (CRS and
CCS) [4]. If the computation includes fill-in and/or pivoting operations, it may be
preferably to use some more complex and flexible data structures (dynamic). We
have experimented with linked lists and hybrid (semi-)dynamic data structures,
depending on the type of data accesses we have to deal with.
To simplify the discussion, hereafter we will consider as a working example

the LU factorization of a sparse matrix, computed using a general method [1,10].
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do k = 1, n
Find pivot=Aij
if (i 6= k)

swap A(k, 1 : n) and A(i, 1 : n)
endif
if (j 6= k)

swap A(1 : n, k) and A(1 : n, j)
endif
A(k + 1 : n, k) = A(k + 1 : n, k)/A(k,k)
do j = k + 1, n

do i = k + 1, n
A(i, j) = A(i, j)−A(i, k)A(k, j)

enddo
enddo

enddo

Fig. 1. LU algorithm (General approach, right-looking version)
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Fig. 2. Pivoting (a) and updating (b) operations, and fill-in (c) in right-
looking LU

Fig. 1 shows an in-place code for the direct right-looking LU algorithm, where
an n-by-n matrix A is factorized. The code includes a row and column pivoting
operation (full pivoting) to provide numerical stability and preserve sparsity.
Fig. 2 depicts the access patterns for the pivoting and updating operations on
both matrices, L and U , and the generation of new entries. Note that efficient
data accesses both by rows and columns are required.

The sparse coefficient matrix may be structured as a two-dimensional doubly
linked list (see Fig. 3 (c)), to make efficient data accesses both by rows and
columns. Each item in such a dynamic structure stores not only the value and
the local row and column indices, but also pointers to the previous and next
nonzero element in its row and column.

The complexity of this list can be reduced if full pivoting is replaced by
partial pivoting, where only columns (or rows) are swapped. This may imply
large memory and computation savings as we can use a simple list of packed
vectors, or a one-dimensional doubly linked list structure, to store the sparse
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Fig. 3. Packed vectors and linked lists as efficient data structures for direct
methods: (a) List of packed vectors; (b) one-dimensional doubly linked list; (c)
two-dimensional doubly linked list; (d) local sparse matrix

matrix. As depicted in Fig. 3 (b), each linked list represents one column of the
sparse matrix, where its nonzero entries are arranged in growing order of the
row index. Each item of the list stores the row index, the matrix entry and two
pointers. A simplification of the linked list is shown in Fig. 3 (a), where columns
are stored as packed vectors, and they are referenced by means of an array of
pointers. The list of packed vectors do not have pointers and, therefore, this
mixed structure requires much less memory space than the doubly linked list.

Compressed formats and lists of packed vectors are very compact and allow
fast accesses by rows or by columns to the matrix entries (but not both at the
same time). Linked lists are useful when more flexible data accesses are needed.
Two-dimensional lists, for instance, allow accesses to both rows and columns
with the same overhead. The fill-in and pivoting issues are easily managed when
doubly linked lists are used, as they make easy the entry insertion and dele-
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!Doubly LLRS, LLCS (one-dimensional)
TYPE entry
INTEGER:: index
REAL:: value
TYPE (entry), POINTER:: prev, next

END TYPE entry

!Doubly LLRCS (two-dimensional)
TYPE entry
INTEGER:: indexi, indexj
REAL:: value
TYPE (entry), POINTER:: previ, prevj
TYPE (entry), POINTER:: nexti, nextj

END TYPE entry

TYPE ptr
TYPE (entry), POINTER:: p

END TYPE ptr

TYPE (ptr), DIMENSION(n):: pex

Fig. 4. Fortran 90 derived types for the items of LLRS, LLCS and LLRCS
storage schemes, and a definition of an array of pointers (pex) to these items

tion operations. In the case of compressed formats (CRS, CCS ...) or a list of
packed vectors, the fill-in problem is more difficult to solve. Compressed formats
also have the inconvenience of not allowing the pivoting operation (column/row
swapping) in an easy way. This can be overcome by using some mixed data
structure, such as the list of packed vectors, or a linked list structure. Column
pivoting is then implemented by just interchanging pointer values.
Albeit their flexibility, linked lists may have some drawbacks. The dynamic

memory allocation for each new entry, as well as the list traversing, are time-
consuming operations. Additionally, they consume more space memory than
packed vectors. Finally, memory fragmentation due to allocation/deallocation of
items may arise, as well as spatial data locality loss.

2.2 Dynamic Sparse Distribution Schemes

Four data storage schemes will be considered: LLCS (Linked List Column Stor-
age), LLRS (Linked List Row Storage), LLRCS (Linked List Row-Column Stor-
age) and CVS (Compressed Vector Storage), the first three schemes to represent
sparse matrices, and the last one to represent sparse (one-dimensional) arrays.
The LLCS storage scheme corresponds to the structure shown in Fig. 3 (b). In
this figure the lists are doubly linked, but it can also be defined as singly linked,
in order to save memory overhead. The LLRS storage scheme is similar to the
LLCS scheme but considering linking by rows instead of columns. A combination
of compressed columns and rows representation, interlinked among themselves,
can be declared using the LLRCS storage scheme, as shown in Fig. 3 (c). As well
as with the other two schemes, the entries can be singly or doubly linked. Finally,
CVS scheme represents a sparse vector as two arrays and one scalar: the index
array, containing the indices of the nonzero entries of the sparse array; the value
array, containing the nonzero entries themselves; and the size scalar, containing
the number of nonzero entries.
Fig. 4 displays the Fortran 90 derived types which may define the items of

each kind of linked list. The first type corresponds to the LLRS and LLCS schemes
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<sparse-directive>::= <datatype>, SPARSE (<sparse-content>) :: <array-objects>
<datatype>::=REAL | INTEGER
<sparse-content>::= LLRS (<ll-spec>)

| LLCS (<ll-spec>)
| LLRCS (<ll2-spec>)
| CVS (<cvs-spec>)

<ll-spec>::= <pointer-array-name>, <pointer-array-name>,
<size-array-name>,
<link-spec>

<ll2-spec>::= <pointer-array-name>, <pointer-array-name>,
<pointer-array-name>, <pointer-array-name>,
<size-array-name>, <size-array-name>,
<link-spec>

<cvs-spec>::= <index-array-name>, <value-array-name>, <size-scalar-name>
<link-spec>::= SINGLY | DOUBLY
<array-objects>::= <sized-array>{,<sized-array>}
<sized-array>::= <array-name>(<subscript>[,<subscript>])

Fig. 5. Syntax for the proposed HPF-2 SPARSE directive with dynamic data
structures

(doubly linked), indistinctly, and the second one to the LLRCS scheme, doubly
linked. The singly linked versions for these data types are equivalent but without
the prev pointers. The list itself is declared also through a derived type, pex,
which defines an array (or two) of pointers to the above items.
Once storage schemes have been defined, we can use the SPARSE directive to

specify that a sparse matrix (or sparse array) is stored using a particular linked
list scheme. This directive was previously introduced [2,19] in the context of
static sparse applications. Fig. 5 shows the BNF syntax for the dynamic SPARSE
directive. The first two data structures, LLRS and LLCS, are defined by two arrays
of pointers (<pointer-array-name>), which point to the beginning and to the
end, respectively, of each row (or column) list, and a third array (<size-array-
name>), containing the number of elements per row (for LLRS) or per column
(for LLCS). The option <link-spec> specifies the type of linking of the list data
structure (singly or doubly). Regarding the LLRCS data structure, we have four
arrays of pointers which point to the beginning and to the end of each row and
each column of the sparse matrix, and two additional arrays storing the number
of elements per row and per column, respectively.
As an example, the following statement,

!HPF$ REAL, DYNAMIC, SPARSE (CVS(vi, vv, sz)):: V(10)

declares V as a sparse vector compressed using the CVS format. V will work in the
code as a place holder of the sparse vector, which occupies no storage. What is
really stored are the nonzero entries of the sparse array in vv, the corresponding
array indices in vi, and the number of nonzero entries in sz. The place holder
V actually provides an abstract object with which other data objects can be
aligned and which can then be distributed. The DYNAMIC keyword means that
the contents of the three arrays, vi, vv and sz, are determined dynamically, as
a result of executing a DISTRIBUTE statement.
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!HPF$ ALIGN V(:) WITH A(*,:)
!HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

vi 1 6 7 1043

V a 0 b c 0 d e 0 0 f

1 3 7

a b e

vi loc

vv loc

vi loc

vv loc

4 6 10

c d f

0 d 0 fc

2 4 6 8 10

a b e 0

1 3 5 7 9

0

PE #00, PE #10 PE #01, PE #11

vv a b c d e f sz 6

!HPF$ REAL, SPARSE (CVS(vi,vv,sz)):: V(10)

Fig. 6. Alignment and distribution of a sparse array on a 2×2 processor mesh

The HPF directives DISTRIBUTE and ALIGN can be applied to sparse place
holders with the same syntax as in the standard. Distributing a sparse place
holder is equivalent to distributing it as if it was a dense array (matrix). For
instance, the statement,

!HPF$ DISTRIBUTE(CYCLIC) ONTO mesh:: V

considers V as a dense array (not compressed), mapping this array on the proces-
sors using the standard CYCLIC data distribution, and representing the distrib-
uted (local) sparse arrays using the CVS compressed format.
In the case of the ALIGN directive, however, the semantics is slightly different.

From the next example code,

REAL, DIMENSION(10,10):: A

INTEGER, DIMENSION(10):: vi

REAL, DIMENSION(10):: vv

INTEGER:: sz

!HPF$ PROCESSORS, DIMENSION(2,2):: mesh

!HPF$ REAL, DYNAMIC, SPARSE (CVS(vi, vv, sz)):: V(10)

!HPF$ ALIGN V(:) WITH A(*,:)

!HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

the (nonzero) entries of V (that is, vv) are aligned with the columns of A depend-
ing on the positions stored in the array vi, and not in the corresponding positions
in their own vv array (which is the standard semantics). Now, the DISTRIBUTE
directive replicates the V array over the first dimension of the processor array
mesh, and distributes it over the second dimension in the same way as the sec-
ond dimension of the A matrix. Observe that in this distribution operation, vi is
taken as the index array for the entries stored in vv. Fig. 6 shows the combined
effect of alignment/distribution for a particular case.
The combination of the directives SPARSE and DISTRIBUTE defines the dis-

tribution scheme of a sparse matrix. The variable V in the example code above
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INTEGER, PARAMETER:: n=1000, dim=8
INTEGER:: k, i, j
REAL:: maxpiv, pivot, amul, product
INTEGER:: actpiv, pivcol
TYPE (entry), POINTER:: aux

TYPE (ptr), DIMENSION(n):: first, last, vpiv
INTEGER, DIMENSION(n):: vsize

REAL, DIMENSION(n):: vcolv, vmaxval
INTEGER, DIMENSION(n):: vcoli
INTEGER:: size

!HPF$ PROCESSORS, DIMENSION(dim):: linear
!HPF$ REAL, DYNAMIC, SPARSE(LLCS(first, last, vsize, DOUBLY)):: A(n,n)
!HPF$ REAL, DYNAMIC, SPARSE(CVS(vcoli, vcolv, size)):: VCOL(n)
!HPF$ ALIGN iq(:) WITH A(*,:)
!HPF$ ALIGN vpiv(:) WITH A(*,:)
!HPF$ ALIGN vmaxval(:) WITH A(*,:)
!HPF$ ALIGN VCOL(:) WITH A(:,*)
!HPF$ DISTRIBUTE (*,CYCLIC) ONTO linear:: A

Fig. 7. Declarative section of the extended HPF-2 parallel sparse LU code

really works as a place holder for the sparse array. The SPARSE directive estab-
lishes the connection between the logical entity V and its actual representation
(compressed format). The benefit of this approach is that we can use the stan-
dard HPF DISTRIBUTE and ALIGN directives applied to the array V and, at the
same time, store the array itself using a compressed format. In the rest of the
code, the sparse matrix is operated using directly its compressed format.

3 Parallel Dynamic Sparse Computations

The SPARSE directive establishes a link between the sparse matrix (or array)
and its storage structure. From this point on, we can choose to hide the storage
scheme to programmers, and allow them to write the parallel sparse code us-
ing dense matrix notations. The compiler will be in charge of translating these
dense notations into parallel sparse codes taking into account the storage schemes
specified. However, this approach supposes a great effort in compiler implemen-
tation, as well as the possibility of mixing in the same code place holders (dense
notations) with real arrays. Bik and Wijshoff [6] and Kotlyar and Pingaly [17]
propose a similar approach, based on the automatic transformation of a dense
program, annotated with sparse directives, into a semantically equivalent sparse
code. The design of such compiler is, however, very complex, in such a way that
no implementation of it is available for general and real problems.
A different approach is based on forcing programmers to use explicitly the

compressed storage structures common in sparse codes, and allow them to use
the place holders (dense notations) only for aligning and distributing purposes.
Parallelism is constrained to the directives. If the parallel code is sequentially
compiled, the resulting code would run properly.

3.1 Parallel Sparse LU Code

A direct right-looking LU factorization with partial pivoting (column swapping)
will be considered in this section. In most cases, partial pivoting leads to similar
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numerical error results than full pivoting, but at a lower cost. However, a matrix
reordering stage (analyze stage) should be added before the factorization. This
is in charge of updating the permutation vectors so as sparsity and numerical
stability are preserved in the subsequent factorization stage. A partial numerical
pivoting is however retained in the factorization stage to cover the case that the
selected pivot in the analyze stage turns to be unstable during factorization.

Despite pivoting, the sparsity of the matrix usually decreases during the
factorization. In such case, a switch to a dense LU factorization may be advan-
tageous at some point of the computation. This dense code is based on Level
2 BLAS, and includes numerical partial pivoting. At the switch point, the re-
duced sparse submatrix is scattered to a dense array. The overhead of the switch
operation is negligible (as the analyze stage) and the reduced dense submatrix
appears distributed in a regular cyclic manner. A 15% sparsity threshold value
was used in our experiments to switch from the sparse to the dense code.

Fig. 7 shows the declarative section of the parallel sparse LU code, using the
proposed extensions to HPF-2. Matrix A is defined as sparse and stored using the
LLCS data structure. The arrays of pointers first and last indicate the first
and the last nonzero entry, respectively, of each column of A The array vsize
stores the number of nonzero entries on each column of A. The sparse array VCOL
is also defined, stored using the CVS format. This array contains the normalized
pivot column of A, calculated in each outer iteration of the algorithm.

The last sentence in the declaration section distributes the columns of the
sparse matrix A cyclically over a one-dimensional arrangement of abstract proces-
sors (the one-dimensional characteristic is not essential). Previously, three dense
arrays, iq, vpiv and vmaxval, were aligned with the columns of A, while VCOL
was aligned with the rows of A. Hence, after distributing A, VCOL is replicated
over all the processors. At each iteration of the main loop of the algorithm (loop
k in Fig. 1), the owner of the column k of A selects and updates on VCOL the
pivot column, which is consistently broadcast to the rest of processors to en-
able the subsequent parallel submatrix update. Fig. 8 shows an example of this
declaration.

Fig. 9 presents the rest of the parallel LU code. The first action corresponds to
the initialization of the array vpiv, which should point to the row that includes
the pivot. This loop is parallel and no communications are required, as both
arrays, vpiv and first, were aligned. Next, loop k starts. SwitchIter was
calculated by the analyze stage, value from which the sparse code switches to
an equivalent dense one.

The first action inside the main loop corresponds to column pivoting pivot-
ing, in which we look for a stable pivot and, if possible, in agreement with the
recommended permutation vector iq (obtained in the analyze stage). To fulfill
the first condition, the pivot should be greater than the maximum absolute value
of the pivot row times an input parameter called u (0 ≤ u ≤ 1). The maximum
absolute value is calculated using the Fortran 90 MAXVAL() intrinsic funtion,
evaluated over vmaxval vector. The update of vmaxval takes place on the sec-
ond INDEPENDENT loop which traverses the pivot row storing the absolute
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Fig. 8. Partitioning of most LU arrays/matrices on two processors, according to
the HPF declaration of Fig. 7 (an even number of columns for A, and that the
outer loop of the LU algorithm is in the fourth iteration, are assumed)

value of each entry on vmaxval. These entries are candidates for pivot. The ON
HOME (vpiv(j)) directive tells the compiler that the processor owning vpiv(j)
will be encharged of iteration j. The RESIDENT annotation points out to the
compiler that all variables referenced inside the directive’s body are local. Thus,
the compiler analysis is simplified and more optimized code may be generated.

Once the threshold maxpiv is obtained, the pivot is chosen in such a way
that its value is greater than the above threshold, and, on the other hand, spar-
sity is preserved by following the iq recommendations. This computation is, in
fact, a reduction operation, and consequently we annotate the corresponding
INDEPENDENT loop with such directive. This user-defined reduction operation is
indeed not considered by the HPF-2 standard, but its inclusion would not add
any significant complexity to the compiler implementation. Finally, after select-
ing the pivot, the swap() routine is called to perform the permutation of the
current column k and the pivot column of matrix A.

After the pivoting operation, the pivot column is updated and packed into
the sparse VCOL array. This is computed by the owner of such column (ON HOME
directive). As VCOL is a replicated array, any update made on it is communicated
to the rest of processors. Finally, the submatrix (k + 1 : n, k + 1 : n) of A is
updated. Loop j runs over the columns of the matrix, and it is parallel. The NEW
directive prevents the compiler from considering inexistent data dependences
due to variables that are actually private to each iteration.

The code also contains the user-defined routines append() and insert()
for list management, which are included in a Fortran 90 module. The append()
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! --> Initialization
!HPF$ INDEPENDENT

DO j = 1, n
vpiv(j)%p => first(j)%p

END DO

! --> Main loop LU
main: DO k = 1, SwitchIter

! --> Pivoting
! --> Candidates for pivot are selected and ...
!HPF$ INDEPENDENT

DO j = k, n
!HPF$ ON HOME (vpiv(j)), RESIDENT BEGIN

IF (.NOT.ASSOCIATED(vpiv(j)%p)) CYCLE
IF (vpiv(j)%p%index /= k) CYCLE
vmaxval(j) = ABS(vpiv(j)%p%value)

!HPF$ END ON
END DO

! --> ... the maximum value is calculated
maxpiv = MAXVAL(vmaxval(k:n))
maxpiv = maxpiv*u

! --> The pivot is chosen from the candidates
! --> (reduction operation)

actpiv = 0
pivcol = 0

!HPF$ INDEPENDENT, REDUCTION(actpiv,pivcol)
DO j = k, n
IF (vmaxval(j) > maxpiv .AND.

iq(pivcol) > iq(j)) THEN
actpiv = vmaxval(j)
pivcol = j

END IF
END DO
IF(pivcol == 0) pivcol=k
IF(pivcol /= k) THEN

! ----> Columns are swapped
CALL swap(k,pivcol,first,last,vpiv,vsize,iq)

END IF

! --> Pivot column is updated and packed
!HPF ON HOME (vpiv(k)), RESIDENT BEGIN

aux => vpiv(k)%p
pivot = 1/(aux%value)
aux%value = pivot
aux => aux%next
size = vsize(k)-1

DO i = 1, size
aux%value = aux%value*pivot
vcolv(i) = aux%value
vcoli(i) = aux%index
aux => aux%next

END DO
!HPF END ON

•
•
•

Fig. 9. Outline of an extended HPF-2 specification of the parallel right-looking
partial pivoting LU algorithm (first part)

routine adds an entry at the end of a list, while the insert() routine adds an
element at the beginning or in the middle of a list.

4 Evaluating Results

A parallel sparse right-looking partial pivoting LU algorithm was implemented
using the Cray T3E Fortran 90 and the SHMEM library [5]. The columns of
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•
•
•

! --> Submatrix of A is Updated
!HPF$ INDEPENDENT, NEW (aux,i,amul,product)
loopj: DO j = k+1, n
!HPF$ ON HOME (vpiv(j)), RESIDENT BEGIN

aux => vpiv(j)%p
IF (.NOT.ASSOCIATED(aux)) CYCLE
IF (aux%index /= k) CYCLE
amul = aux%value
vsize(j) = vsize(j)-1
vpiv(j)%p => aux%next
aux => aux%next

loopi: DO i = 1, size
product = -amul*vcolv(i)
DO
IF (.NOT.ASSOCIATED(aux)) EXIT
IF (aux%index >= vcoli(i)) EXIT
aux => aux%next

END DO
outer_if: IF (ASSOCIATED(aux)) THEN

IF (aux%index == vcoli(i)) THEN
aux%value = aux%value + product

ELSE
! ----> First or middle position insertion

CALL insert(aux,vcoli(i),product,first(j)%p,
vsize(j))

IF (vpiv(j)%p%index >= aux%prev%index)
vpiv(j)%p => aux%prev

END IF
ELSE outer_if

! ----> End position insertion
CALL append(vcoli(i),product,first(j)%p,last(j)%p,

vsize(j))
IF (.NOT.ASSOCIATED(vpiv(j)%p)) vpiv(j)%p => last(j)%p

END IF outer_if
END DO loopi

!HPF$ END ON
END DO loopj

END DO main

Fig.9 (cont.). Outline for an extended HPF-2 specification of the parallel right-looking
partial pivoting LU algorithm (last part)

the sparse matrix A were cyclically distributed over the processors (linearly
arranged), and stored in the local memories using one-dimensional doubly linked
lists. This parallel algorithm is similar to the sequential version, but with local
indices instead of the global ones, and Cray SHMEM routines performing com-
munication/synchronization operations. All these operations were encapsulated
into calls to the DDLY (Data Distribution Layer) runtime library [20]. The par-
allel code was designed in such a way that it could be the output of a hypothetic
extended HPF-2 compiler (extended with the directives for the proposed distrib-
ution schemes). That is, it should be not considered as an optimized hand-coded
program.

Fig. 10 shows execution times and speed-up for the parallel LU algorithm.
Test sparse matrices were taken from the Harwell-Boeing suite and University of
Florida Sparse Matrix Collection [8] (see Table 1). The efficiency of the parallel
code is high when the size of the input matrix is significantly large. We also
carried out experiments considering meshes of processors instead of linear arrays,
but the best times were obtained in the latter case and when the matrices were
distributed by columns. Load imbalances due to fill-in (cyclic distribution) were
not a problem for any matrix (see Fig. 11).
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Fig. 10. Parallel sparse LU execution times and speed-up for different sparse
matrices, using F90 linked lists and Cray T3E SHMEM

Table 1. Harwell-Boeing and Univ. of Florida test matrices

Matrix Origin n # entries sparsity

STEAM2 Oil reservoir simulation 600 13760 3.82%
JPWH991 Circuit physics modeling 991 6027 0.61%
SHERMAN1 Oil reservoir modeling 1000 3750 0.37%
SHERMAN2 Oil reservoir modeling 1080 23094 1.98%
ORANI678 Economic modeling 2529 90158 1.41%
WANG1 Discretized electron continuity 2903 19093 0.22%
WANG2 Discretized electron continuity 2903 19093 0.22%
UTM3060 Uedge test matrix 3060 42211 0.45%
GARON1 2D FEM, Navier-Stokes, CFD 3175 88927 0.88%
EX14 2D isothermal seepage flow 3251 66775 0.63%

SHERMAN5 Oil reservoir modeling 3312 20793 0.19%
LNS3937 Compressible fluid flow 3937 25407 0.16%
LHR04C Light hydrocarbon recovery 4101 82682 0.49%
CAVITY16 Driven cavity problem 4562 138187 0.66%

The sequential efficiency of the Fortran 90 implementation of the sparse LU
algorithm was also tested. Table 2 presents comparison results from this imple-
mentation and the Fortran 77 MA48 routine [10]. We observe that the MA48
routine is significantly faster than our algorithm for many matrices, but it should
be considered the fact that the Cray Fortran 90 compiler is not efficient gener-
ating code for managing lists. However, the resulting computing errors are prac-
tically the same for both algorithms. The main advantage of our approach is
its ease to be parallelized, as opposite to the MA48 routine, which is inherently
sequential, as corresponds to a left-looking algorithm.

The analyze and solve (forward and backward substitution) stages of the
LU algorithm were also implemented, but they are not presented here as no
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Fig. 11. Workload (non-null matrix values) on each processor after executing
the parallel sparse LU factorization on a 16-processor system

Table 2. Comparison between Fortran 90 LU and MA48 (times in sec.)

Times Errors

Matrix F90 – MA48 ratio F90 – MA48

STEAM2 .572 – .373 1.53 .15E-11 – .13E-11
JPWH991 1.039 – .563 1.84 .44E-13 – .82E-13
SHERMAN1 .574 – .148 3.87 .14E-12 – .16E-12
SHERMAN2 10.05 – 9.77 1.02 .14E-05 – .15E-05
ORANI678 6.74 – 3.52 1.91 .70E-13 – .74E-13
WANG1 16.33 – 18.76 0.87 .11E-12 – .97E-13
WANG2 16.19 – 16.54 0.97 .53E-13 – .52E-13
UTM3060 20.57 – 22.68 0.90 .53E-08 – .58E-08
GARON1 36.39 – 28.80 1.26 .53E-09 – .21E-08
EX14 53.68 – 62.78 0.85 .28E+01 – .93E+01

SHERMAN5 12.58 – 6.09 2.06 .75E-12 – .59E-12
LNS3937 21.88 – 15.09 1.44 .15E-02 – .13E-02
LHR04C 22.15 – 10.42 2.12 .22E-03 – .10E-03
CAVITY16 81.23 – 88.48 0.91 .39E-09 – .49E-09

additional relevant aspect is contributed. Both execution time and fill-in are
comparable with those of the MA48 routine (they do not differ more than 10%).

5 Related Work

There are many parallel sparse LU factorization designs in the literature. From
the loop-level parallelism point of view, the parallel pivot approach allows the
extraction of an additional parallelism due to the sparsity of the matrix, besides
the obvious one coming from the independences on the loops traversing rows and
columns [3]. Coarser parallelism level can be exploited thanks to the elimination
tree, which can be used to schedule parallel tasks in a multifrontal [11] code. It
is also possible to use a coarse matrix decomposition to obtain an ordering to
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bordered block triangular form, as is done in the MCSPARSE package [14]. The
supernodal [9] approach is also a parallelizable code [13].
Some of the above parallel solutions can be implemented using the approach

described in this paper. Loop-level LU approaches can be implemented using the
LLRCS data storage (in addition to LLCS), and some other complex reductions
to choose a good parallel pivot set, but loosing some of the performance due
to the semi-automatic implementation. The multifrontal approach, however, is
not suitable to the linked list sparse directive, due to the use of different data
storage schemes. However, they could be implemented using the basic BCS or
BRS sparse distributions [2,19]. The implementation of the supernodal code in
[9] uses some sort of column compressed storage, but it would be necessary to
simplify the memory management and the data access patterns to consider a
data-parallel implementation of this code.

6 Conclusions

This paper presented a solution to the parallelization of dynamic sparse matrix
computations (applications suffering from fill-in and/or involving pivoting oper-
ations) in a HPF-2 environment. The programmer is allowed to specify a partic-
ular sparse data storage representation, in addition to a standard data distrib-
ution. Sparse computations are specified by means of the storage representation
constructs, while the (dense) matrix notation is reserved to declare alignments
and distributions. Our experiments (a parallel sparse direct LU solver, emulat-
ing the output of an extended HPF-2 compiler) show that we can obtain high
efficiencies using that strategy.
The research discussed in this paper gives new in-depth understanding in

the semi-automatic parallelization of irregular codes dealing with dynamic data
structures (list based), in such a way that the parallel code becomes a general-
ization of the original sequential code. An efficient parallel sparse code can be
obtained by annotating the corresponding sequential version with a few number
of HPF-like directives. The techniques described in this paper are not only useful
to deal with the fill-in and pivoting problems, but they can also be applied to
many other applications where the same or similar data structures are in use.
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