
NPB-MPJ: NAS Parallel Benchmarks
Implementation for Message-Passing in Java

Damián A. Mallón, Guillermo L. Taboada, Juan Touriño, and Ramón Doallo

Computer Architecture Group
Dept. of Electronics and Systems, University of A Coruña

A Coruña, 15071 Spain
Email: {dalvarezm,taboada,juan,doallo}@udc.es

Abstract—Java is a valuable and emerging alternative for the
development of parallel applications, thanks to the availability of
several Java message-passing libraries and its full multithreading
support. The combination of both shared and distributed memory
programming is an interesting option for parallel programming
multi-core systems. However, the concerns about Java perfor-
mance are hindering its adoption in this field, although it is
difficult to evaluate accurately its performance due to the lack
of standard benchmarks in Java.

This paper presents NPB-MPJ, the first extensive implementa-
tion of the NAS Parallel Benchmarks (NPB), the standard parallel
benchmark suite, for Message-Passing in Java (MPJ) libraries.
Together with the design and implementation details of NPB-
MPJ, this paper gathers several optimization techniques that
can serve as a guide for the development of more efficient Java
applications for High Performance Computing (HPC). NPB-MPJ
has been used in the performance evaluation of Java against
C/Fortran parallel libraries on two representative multi-core
clusters. Thus, NPB-MPJ provides an up-to-date snapshot of
MPJ performance, whose comparative analysis of current Java
and native parallel solutions confirms that MPJ is an alternative
for parallel programming multi-core systems.

I. INTRODUCTION

Java has an important presence in the industry and academia
due to its appealing characteristics: built-in networking and
multithreading support, object orientation, platform indepen-
dence, portability, security, it is the main training language
for computer science students and has a wide community
of developers. Moreover, the gap between native languages,
such as C/C++ and Fortran, and Java performance has been
narrowing for the last years, thanks to the Java Virtual Machine
(JVM) Just-in-Time (JIT) compiler that obtains near native
performance from Java bytecode. Therefore, nowadays Java is
a competitive alternative in HPC.

The clusters, due to their scalability, flexibility and accept-
able ratio performance/cost, have an important presence in
HPC. Currently, multi-core clusters are the most popular op-
tion for the deployment of HPC infrastructures. These systems
are usually programmed with native languages using message-
passing libraries, especially MPI [1], which are targeted to
distributed memory systems. However, the hybrid architec-
ture (shared/distributed memory) of the multi-core systems
demands the use of hybrid programming approaches, such as
the use of MPI+OpenMP, in order to take advantage of the

available processing power. An interesting alternative is the
use of Java for parallel programming multi-core systems. In
fact, the Java built-in networking and multithreading support
makes this language especially suitable for this task.

Moreover, the availability of different Java parallel pro-
gramming libraries, such as Message-Passing in Java (MPJ)
libraries and ProActive [2] [3], an RMI-based middleware
for multithreaded and distributed computing focused on Grid
applications, eases Java’s adoption. In this scenario, a com-
parative evaluation of Java for parallel computing against
native solutions is required in order to assess its benefits and
disadvantages. Thus, we provide an extensive implementation
of the standard parallel benchmark suite, the NAS Parallel
Benchmarks (NPB) [4], for MPJ. Moreover, as JVM tech-
nology and MPJ libraries are actively evolving, this paper
also aims to be an up-to-date snapshot of MPJ performance,
compared to existing Java and native solutions for parallel
programming.

The structure of this paper is as follows: Section 2 presents
background information about MPJ. Section 3 introduces the
related work in Java NPB implementations. Section 4 describes
the design, implementation and optimization of NPB-MPJ,
our NPB implementation for MPJ. Comprehensive benchmark
results from an NPB-MPJ evaluation on two representative
multi-core clusters are shown in Section 5. Moreover, ad-
ditional NPB results from different Java and native parallel
libraries (Java threads, ProActive, MPI and OpenMP) are also
shown for comparison purposes. Finally, Section 6 concludes
the paper.

II. MESSAGE-PASSING IN JAVA

The message-passing is the most widely used parallel
programming model as it is portable, scalable and usually
provides good performance. It is the preferred choice for
parallel programming distributed memory systems such as
clusters, which provide higher scalability and performance
than shared memory systems. Regarding native languages,
MPI is the standard interface for message-passing libraries.

Soon after the introduction of Java, there have been several
implementations of Java message-passing libraries (eleven
projects are cited in [5]). Most of them have developed their
own MPI-like binding for the Java language. The two main



proposed APIs are the mpiJava API [6] and MPJ API [7],
whose main differences lay on naming conventions of vari-
ables and methods. The most relevant MPJ libraries are next
shown.

The mpiJava [8] library consists of a collection of wrapper
classes that call a native MPI implementation (e.g., MPICH or
OpenMPI) through Java Native Interface (JNI). This wrapper-
based approach provides efficient communication relying on
native libraries, adding a reduced JNI overhead. However,
mpiJava currently only supports some combinations of JVMs
and MPI libraries, as wrapping a wide number of functions
and heterogeneous runtime environments entails an important
maintaining effort. Additionally, this implementation presents
instability problems, derived from the native code wrapping,
and it is not thread-safe, being unable to take advantage of
multi-core systems through multithreading.

The main mpiJava drawbacks are solved with the use
of “pure” Java (100% Java) message-passing libraries, that
implement the whole messaging system in Java. However,
these implementations are usually less efficient than mpiJava.
MPJ Express [9] is a thread-safe and “pure” MPJ library
that implements the mpiJava API. Furthermore, it provides
Myrinet support (through the native Myrinet eXpress, MX,
communication library). MPJ/Ibis [10] is another “pure” MPJ
library integrated in the Ibis parallel and distributed Java
computing framework [11]. MPJ/Ibis implements the MPJ API
and also provides Myrinet support, although on GM, which
shows poorer performance than MX.

Additionally, there are several recent MPJ projects, such
as Parallel Java [12], Jcluster [13] and P2P-MPI [14], devel-
opments tailored to hybrid, heterogeneous and grid computing
systems, respectively. Previous Java message-passing libraries,
although raised many expectations in the past, are currently
out-of-date and their interest is quite limited. This important
number of past and present projects is the result of the
sustained interest in the use of Java for parallel computing.

III. NAS PARALLEL BENCHMARKS IMPLEMENTATIONS IN
JAVA

The NAS Parallel Benchmarks (NPB) [4] consist of a
set of kernels and pseudo-applications taken primarily from
Computational Fluid Dynamics (CFD) applications. These
benchmarks reflect different kinds of computation and commu-
nication patterns that are important across a wide range of ap-
plications. Therefore, they are the de facto standard in parallel
performance benchmarking. There are NPB implementations
for the main parallel programming languages and libraries,
such as MPI (from now on NPB-MPI), OpenMP (from now
on NPB-OMP), High Performance Fortran (HPF), UPC, and
Co-Array Fortran.

Regarding Java, currently there are three NPB implemen-
tations, apart from NPB-MPJ, namely the multithreaded [4]
(from now on NPB-JAV), the ProActive [15] (from now on
NPB-PA), and the Titanium [16] implementations. However,
these three developments present several drawbacks in order
to evaluate the capabilities of Java for parallel computing.

NPB-JAV is limited to shared memory systems and thus
its scalability is lower than the provided by the distributed
memory programming model. Regarding NPB-PA, although
relies on a distributed memory programming model, the use of
an inefficient communication middleware such as RMI limits
its performance scalability. Titanium is an explicitly parallel
dialect of Java, so its portability is quite limited. Moreover,
the NPB-MPJ development is of great interest as the reference
implementation of the NPB is written in MPI. Thus, Java can
be evaluated within the target programming model of the NPB,
the message-passing paradigm.

Another motivation for the implementation of the NPB-
MPJ is the current lack of parallel benchmarks in Java. The
most noticeable related project is the Java Grande Forum
(JGF) benchmark suite [17] that consists of: (1) sequential
benchmarks, (2) multithreaded codes, (3) MPJ benchmarks,
and (4) the language comparison version, which is a subset
of the sequential benchmarks translated into C. However,
the JGF benchmark suite does not provide with the MPI
counterparts of the MPJ codes, allowing only the comparison
among MPJ libraries and Java threads. Moreover, its codes are
less representative of HPC kernels and applications than the
NPB kernels and applications.

Therefore, NPB-MPJ is a highly interesting option to im-
plement a parallel benchmark suite in Java. The use of MPJ
allows the comparative analysis of the existing MPJ libraries
and the comparison between Java and native message-passing
performance, using NPB-MPJ and NPB-MPI, respectively.
Moreover, it also serves to evaluate Java parallel libraries
which have implemented the NPB, such as ProActive (NPB-
PA).

Previous efforts in the implementation of NPB for MPJ
have been associated with the development of MPJ libraries.
Thus, JavaMPI [18] included EP and IS kernels, the two
shortest NPB codes. Then, the CG kernel was implemented
for MPJava [19]. Finally, P2P-MPI [14] also implemented the
EP and IS kernels.

NPB-MPJ enhances these previous efforts implementing an
extensive number of benchmarks: the CG, EP, FT, IS, MG and
DT kernels and the SP pseudo-application. An approximate
idea of the implementation effort carried out in NPB-MPJ
can be estimated using the SLOC (Source Lines Of Code)
metric: CG has 1000 SLOC, EP 350, FT 1700, IS 700, MG
2000, DT 1000, and SP 4300 SLOC. NPB-MPJ has as a
whole approximately 11.000 SLOC. Moreover, NPB-MPJ uses
the most extended Java message-passing API, the mpiJava
API (mpiJava and MPJ Express). Finally, it provides support
for automating the benchmarks execution and the graphs and
performance reports generation. NPB-MPJ has significantly
increased the availability of standard Java parallel benchmarks.

IV. DESIGN, IMPLEMENTATION AND OPTIMIZATION OF
NPB-MPJ

NPB-MPJ is the implementation of the standard NPB
benchmark suite for MPJ performance evaluation. This suite
allows: (1) the comparison among MPJ implementations; (2)



the evaluation of MPJ against other Java parallel libraries; (3)
the assessment of MPJ versus MPI; and finally, (4) it provides
an example of best programming practices for performance
in Java parallel applications. This section presents the design
of NPB-MPJ, the implementation of its initial version and its
subsequent performance optimization.

A. NPB-MPJ Design

The NPB-MPJ development has been based on the NPB-
MPI implementation, which consists of Fortran MPI codes
except for IS and DT, which are C MPI kernels. The use
of the message-passing programming model determines that
NPB-MPJ and NPB-MPI share several characteristics, and
thus NPB-MPJ has followed the NPB-MPI SPMD paradigm,
its workload distribution and communications. The NPB-
JAV implementation has also served as source for NPB-MPJ.
Although its master-slave paradigm has not been selected for
NPB-MPJ, its Java-specific solutions, such as its complex
numbers support or its timing methods, have been useful for
NPB-MPJ.

An important issue tackled in NPB-MPJ has been the
selection between a “pure” object oriented design or an
imperative approach through the use of “plain objects”. In
order to maximize NPB-MPJ performance, it has been opted
for the “plain objects” design as it reduces the overhead
of the “pure” object oriented design (up to a 95%). The
overhead derived from an intensive use of object orientation
in numerical codes has been recognized as significant in the
related literature [20]. An example of this design decision is
the complex numbers support in NPB-MPJ. As Java does not
have a complex number primitive datatype and the NPB uses
them thoroughly, NPB-MPJ has implemented its own support.
Thus, a complex number is implemented as a two-element
array (real and imaginary parts). This approach presents less
overhead than the implementation of complex number objects,
which trades off a clear design and the encapsulation features
for higher access overhead, especially when dealing with
arrays of complex number objects.

B. NPB-MPJ Implementation

NPB-MPJ consists of the CG, EP, FT, IS, MG and DT
kernels and the SP pseudo-application. A brief description of
the implemented benchmarks is next presented. The CG kernel
is a sparse iterative solver that tests communications perfor-
mance in sparse matrix-vector multiplications. The EP kernel
is an embarrassingly parallel code that assesses the floating
point performance, without significant communications. The
FT kernel performs a series of 3-D FFTs on a 3-D mesh that
tests aggregated communication performance. The IS kernel
is a large integer sort that evaluates both integer computation
performance and the aggregated communication throughput.
MG is a simplified multigrid kernel that performs both short
and long distance communications. The DT (Data Traffic)
kernel operates with graphs and evaluates communication
throughput. The SP (Scalar Pentadiagonal) pseudo-application

is a simulated CFD application. This wide range of imple-
mented benchmarks assures a broad performance analysis.
Each kernel has presented its particular implementation issues.
Moreover, there is a common issue in NPB-MPJ codes, which
is the data storage handling, as next presented.

1) Java Array Handling: The NPB handles arrays of up to
five dimensions. In native languages it is possible to define
multidimensional arrays whose memory space is contiguous,
unlike Java, where an n-dimensional array is defined as an ar-
ray of n−1 dimensional arrays. The main issue for NPB-MPJ
is the lack of support for the direct send of logically contiguous
elements in multidimensional arrays (e.g., two rows from a C
two-dimensional array). In MPI it is possible to communicate
adjacent memory regions. In MPJ this has to be done through
multiple communication calls or buffering the data in a one
dimensional array in order to perform a single communication.
The latter is the option initially implemented in NPB-MPJ,
trying to minimize the communication overhead. However, this
technique shows an important buffering overhead, which has
motivated the search for a more efficient alternative.

The solution is the array flattening, which consists of the
mapping of a multidimensional array in a one dimensional
array. Thus, NPB-MPJ only uses one dimensional arrays.
In order to reference a concrete element it is required a
positioning method that maps an n-dimensional location into
its corresponding one dimensional position. NPB-MPJ has
implemented this mapping function so that adjacent elements
in the C/Fortran versions are contiguous in Java, in order to
provide an efficient access to the data. A particular application
of the array flattening in NPB-MPJ has been applied in
the complex number arrays, replacing the two dimensional
array (complexNum arr[2][N ]) for a one dimensional array
(complexNum arr[2xN ]). In this case, in order to exploit the
locality of the data the positioning method maps a complex
number to contiguous positions (complexNum arr[x] and
complexNum arr[x+1]). Therefore, it is direct the complex
numbers support in MPJ communications. The array flattening
has yielded a significant performance increase, not only in
avoiding data buffering and reducing the number of commu-
nications calls, but also on accessing the array elements.

C. NPB-MPJ Optimization

Once a fully functional NPB-MPJ first implementation has
been developed, several optimizations have been applied to the
benchmark codes. This subsection presents them.

1) JVM JIT Compiler-based Optimization: The Java byte-
code can be either interpreted or compiled for its execution
by the JVM, depending on the number of times the method
to which the bytecode belongs is invoked. As the bytecode
compilation is an expensive operation that increases signif-
icantly the runtime, it is reserved to heavily-used methods.
However, at JVM start-up is not always possible to find out
these most heavily-used methods. Therefore, the JVM gathers
at runtime information about methods invocation and their
computational cost, in order to guide the compiler optimization
of the JVM JIT compiler. The JIT compiler compiles Java



bytecode to native code or recompiles native code applying
further optimizations in order to minimize the overall runtime
of a Java application. Its operation is guided by the profiling
information of the executed methods and the JVM policy.

Thus, regarding JIT compiler operation, two paradoxes oc-
cur in Java applications, and in particular in NPB-MPJ: (1) an
optimized code yields worse performance than an unoptimized
code and (2) a code with many invocations to simple methods
runs faster than a code with all the methods inlined. In the
first case, the JIT compiler optimizes more aggressively the
methods that fall beyond certain load threshold. In NPB-MPJ
the manual code optimization of some methods resulted in
initially lower execution time than the first invocation of the
unoptimized methods. Therefore, the JIT compiler does not
optimize aggressively their code and eventually the overall
execution time is slower than the previous version. In the
latter case, a Java application with multiple simple methods
that are constantly invoked run faster than a Java code with
less methods and whose method invocations are inlined. The
simple methods are more easily optimized, in terms of compi-
lation time and in quality of the generated code. Moreover, the
JVM gathers more runtime information of methods constantly
invoked, allowing a more effective optimization of the target
bytecode.

NPB-MPJ takes advantage of the JIT compiler operation.
Thus, in general the code has not been manually optimized,
relying on the JIT compiler for this task. However, there are a
few exceptions such as the use in the most inner loops of bit
shifting operations instead of integer multiplication, divisions
by powers of two and the optimization of complex numbers
operations in the FT kernel. Another exception is the use of
the relative positioning. Instead of accessing to contiguous
elements every time through global positioning method calls,
it is used the location of the first element as base position (loop
invariant) and then adjacent elements are accessed with their
corresponding offsets to the base position. This optimization
is only applied in the most inner loop.

Moreover, the benchmarks code has been refactored towards
simpler and independent methods. More concretely, simple
methods for the multiplication and division of complex num-
bers, and for mapping elements from multidimensional to
one dimensional arrays have been implemented, rather than
inlining these operations in the code in order to avoid the
method invocation overhead. The performance improvement
for NPB-MPJ with this optimization has been quite significant,
especially for the SP pseudo-application. Furthermore, the
performance optimization techniques used in this work are
easily applicable to other codes, whose performance can be
greatly improved as it has been done for the SP pseudo-
application, for which up to a 2800% performance increase
has been reported.

V. PERFORMANCE EVALUATION

A. Experimental Configuration

An evaluation of Java for parallel programming using NPB-
MPJ has been carried out on two multi-core clusters. The first

one is a Gigabit-Ethernet cluster that consists of 8 nodes, each
with 2 dual-core processors (Intel Xeon 5060 at 3.2 GHz) and
4 GB of memory. The OS is Linux CentOS 4.4 with C com-
piler gcc 4.1.2. The JVM used is Sun JDK 1.6.0 02. The native
MPI library is MPICH2 1.0.7 with the SSM (Sockets and
Shared Memory) channel, which uses sockets for internode
transfers and shared memory for intranode communication.
This system results have been obtained using 1 core per node,
except for 16 and 32 processes, for which 2 and 4 cores per
node, respectively, have been used.

The second system is an Infiniband cluster that consists of
4 HP Integrity rx7640 nodes, each of them with 8 Montvale
Itanium2 (IA64) dual-core processors at 1.6 GHz and 128
GB of memory. The Infiniband NIC is a dual 4X IB port
(16 Gbps of theoretical effective bandwidth). The native low-
level communication middleware used by Java is SDP Sockets
Direct Protocol (SDP), whereas MPI uses the Infiniband Verbs
driver from the Open Fabrics Enterprise Distribution (OFED)
1.2. The OS is SUSE Linux Enterprise Server 10 with C
compiler Intel icc 9 (with OpenMP support). The JVM is BEA
JRockit 5.0 (R27.6), the only JVM 1.5 or higher (prerequisite
for the evaluated MPJ libraries) available for Linux IA64 at
the evaluation time. Regarding this point, Sun has recently
released its JVM 1.6u7 for Linux IA64, but preliminary tests
have shown its poorer NPB-MPJ performance than the JRockit
5.0, so the Sun JVM has not been included in the current
work. The native MPI library is HP MPI 2.2.5.1 that uses
the Infiniband Verbs driver for internode communication and
shared memory for intranode communication. This system
results shown have been obtained using up to 8 cores per
node. Thus, the number of nodes used is dncores/8e, where
ncores is the number of cores used.

The evaluated MPJ libraries are MPJ Express 0.27 and
mpiJava 1.2.5x. It has been used the NPB-MPI/NPB-OMP
version 3.0. The ProActive version used is the 3.2.

The performance results considered in this work have
been derived from the sample of several iterations of the
kernel/application solver method, ignoring the initialization
times and the previous warm-up iterations. The metric that
has been considered is MOPS (Millions of Operations Per
Second), which measures the kernel operations, that differ
from the CPU operations issued.

B. NPB Kernels Performance on the Gigabit Ethernet cluster

Figures 1 and 2 show NPB-MPI, NPB-MPJ and NPB-
PA kernels performance on the Gigabit Ethernet multi-core
cluster. The NPB-MPJ results have been obtained using two
MPJ libraries, MPJ Express and mpiJava, in order to compare
them. The results are shown in MOPS, in order to compare
the absolute performance of the different parallel libraries.
Moreover, it has been used Classes A and B for problem
sizes as these are small workloads targeted for execution on a
reduced number of cores.

Regarding CG kernel performance, the evaluated implemen-
tations show poor scalability using more than 1 core per node.
In this scenario NPB-PA obtains the lowest results, whereas



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              CG (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              CG (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              EP (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              EP (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 400

 800

 1200

 1600

 2000

 2400

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              FT (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 400

 800

 1200

 1600

 2000

 2400

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              FT (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

Figure 1. CG, EP and FT kernels performance on the Gigabit Ethernet multi-core cluster



 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              IS (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              IS (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              MG (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 1  2  4  8  16  32

M
O

P
S

Number of Cores

              MG (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)
NPB−PA

Figure 2. IS and MG kernels performance on the Gigabit Ethernet multi-core cluster

the performance of NPB-MPJ is good, achieving with mpiJava
up to a 86% of the results of NPB-MPI (Class B, 8 cores).
Using MPJ Express, NPB-MPJ obtains up to a 72% of NPB-
MPI performance.

The EP kernel is an “embarrassingly parallel” benchmark,
with few communications that have low impact on the overall
performance. Therefore, its speedup is almost lineal. Thus,
NPB-MPJ achieves up to a 62% of the performance of NPB-
MPI (Class B, 32 cores). Finally, the high results of NPB-PA,
quite similar to NPB-MPI, are especially remarkable.

Within FT kernel results, the NPB-MPI shows the best
performance, although for Class A and 16-32 cores is lower
than NPB-MPJ (up to a 47%). In this case, the intensive use of
complex numbers in this kernel has not prevented NPB-MPJ
from showing relatively high performance (for Class B and 32
cores NPB-MPJ obtains the 96% of NPB-MPI results). How-
ever, the memory requirements of FT Class B workload have
made it impossible to run this kernel with NPB-MPJ on less
than 8-16 cores, with mpiJava and MPJ Express, respectively.
In this scenario, NPB-PA has shown its robustness running in
all circumstances and showing competitive performance, quite
similar to mpiJava and slightly lower than MPJ Express.

Regarding IS graphs, NPB-MPJ usually shows the highest
performance for Class A, whereas NPB-MPI obtains the best
results for Class B. The scalability of IS is quite limited for
message-passing libraries as it is a communication intensive
kernel.

Finally, the best MG performance has been obtained using
NPB-MPI, whereas NPB-PA shows generally the worse re-
sults. NPB-MPJ obtains quite similar performance for the two
MPJ libraries, mpiJava and MPJ Express, which are half-way
between NPB-MPI and NPB-PA results. However, NPB-MPJ
shows the best scalability, as the larger the number of cores, the
closer to NPB-MPI performance. In fact, NPB-MPJ achieves
around 80-90% of NPB-MPI performance on 32 cores.

The analysis of these results can also be presented in terms
of the four main evaluations that can be performed with
NPB-MPJ (see Section 4). The first is the comparison among
MPJ implementations. The performance differences between
mpiJava and MPJ Express are mainly explained by their
communication efficiency, which is usually higher for mpiJava
as it relies on a native MPI library (in our testbed on MPICH2)
rather than on “pure” Java communications. CG and MG
results clearly confirm this, where mpiJava outperforms MPJ



Express. However, on FT and IS MPJ Express outperforms
mpiJava on some cases. EP results are almost equal for
both libraries as this kernel performs few communications.
Nevertheless, mpiJava drawbacks can also be seen, as it could
not be run in some cases for FT, IS and MG, always with
the Class B problem size. The reason is the instability of the
JVM, compromised with the access to the native MPI code
through JNI. The configurations where MPJ Express results
are not shown are due to JVM heap size problems, as MPJ
Express demands more resources than mpiJava.

The second evaluation that can be performed with Figures
1 and 2 results is the comparison of MPJ against other Java
parallel libraries, in this case ProActive. ProActive is an RMI-
based middleware, and for this reason its performance is
usually lower than MPJ libraries, whose communications are
based on MPI or on Java sockets. In fact, the results show that
the scalability of NPB-PA is worse than the NPB-MPJ one.
However, ProActive is a middleware more robust and stable
than the MPJ libraries as it could execute all the benchmarks,
without instability or resource exhaustion issues.

The third analysis that has been done is the comparison of
MPJ against native MPI. The presented results show that MPI
generally outperforms MPJ, around a mean 25%. However,
MPJ outperforms MPI in some scenarios, such as on IS and
FT Class A, although for cases where MPI scalability was
very poor.

Finally, the analysis of NPB-MPJ results has shown that
MPJ does not especially benefit from the use of more than
a core per node, except for EP. The best MPJ performance
has been usually obtained on 8 cores (1 core per node). This
behavior is not exclusive of MPJ, as MPI presents similar
results. The reason is that the workloads considered (Class A
and B) are relatively small and the impact on performance
of the Gigabit Ethernet high start-up latency is important.
Moreover, the network contention also impacts throughput.
Thus, although a message-passing library can take advantage
of shared memory transfers, a Gigabit Ethernet network consti-
tutes the main performance bottleneck, especially when several
processes are scheduled per cluster node.

C. Performance of NPB-MPJ Kernels on the Infiniband cluster

Figure 3-4 shows NPB-MPI, NPB-MPJ, NPB-OMP and
NPB-JAV performance on the Infiniband multi-core cluster.
The NPB-MPJ results have been obtained using only MPJ
Express as the JRockit JVM + HP MPI + Linux IA64 combi-
nation is not supported by mpiJava. This is an example of the
mpiJava lack of portability drawback. NPB-PA results are not
shown for clarity purposes due to its low performance. The
results are shown using speedups as both shared (NPB-OMP
and NPB-JAV) and distributed (NPB-MPI and NPB-MPJ)
memory programming models have been evaluated. Thus, it
is required a performance metric that does not depend on the
particular experimental results. Thus, the speedup metric has
been selected due to its usefulness in order to analyze the
scalability of parallel codes.

Regarding CG results, they are quite dependent on the
problem workload. Thus, NPB-MPJ speedups are small for
Class A and high for Class B. NPB-JAV shows generally
the best scalability, although it is limited to shared memory
scenarios.

The EP kernel, due to its small communications, shows
again a high parallel efficiency on this cluster.

Regarding FT performance, the shared memory implemen-
tations, NPB-JAV and NPB-OMP, obtain the best speedups.
For this kernel the message-passing libraries show smaller
scalability, especially for NPB-MPJ with Class A workload.
Nevertheless, the gap between NPB-MPI and NPB-MPJ nar-
rows for Class B, even obtaining similar results (up to 8 cores).

IS is a communication intensive kernel whose NPB-OMP
implementation presents important slowdowns, as well as the
NPB-MPJ one, which shows significantly low speedups. The
best performance is obtained by NPB-MPI, followed by NPB-
JAV.

Finally, MG kernel results are quite similar among them,
especially for Class B workload. The most significant results
are that NPB-MPI outperforms NPB-MPJ from 4 and 16 cores,
for Class A and Class B, respectively, and that NPB-JAV shows
better results than NPB-OMP on 4-8 cores.

Additionally, the results shown in Figures 3 and 4 allow the
evaluation of MPJ against Java threads and the comparison of
the scalability of Java versus native parallel libraries (MPI and
OpenMP).

Regarding the first evaluation, NPB-JAV usually outper-
forms NPB-MPJ, and even outperforms the native results
on 8 cores for some configurations. Nevertheless, NPB-JAV
scalability is limited to shared memory systems, whereas NPB-
MPJ takes advantage of the higher number of cores of the
whole distributed memory system to achieve higher speedups
(especially for Class B, except IS), quite similar to NPB-
MPI scalability. In this scenario is clear that MPJ requires
significant workloads in order to scale performance, as small
problem sizes (Class A) impact negatively on their results.

D. Performance of SP Pseudo-application

This subsection presents SP pseudo-application perfor-
mance on the Gigabit Ethernet (Figure 5) and Infiniband
(Figure 6) multi-core clusters. The graphs are presented using
the same layout of the previous graphs shown for each system.
Thus, SP results are presented using MOPS and speedups
on the Gigabit Ethernet and Infiniband clusters, respectively.
NPB-PA does not include SP code. SP requires a square
number of processes (1,4,9,16,25), and it has been used on
the Gigabit Ethernet cluster 1 core per node, except for 16
and 25 cores, where 2 and 3 cores per node have been used.

The results shown confirm the analysis presented in the
previous subsections. Thus, NPB-MPJ results are quite close to
NPB-MPI performance, even outperforming the native results
on the Gigabit Ethernet cluster. In this scenario the scalability
of MPJ is higher than for MPI, as for 1 core MPI doubles MPJ
performance and on 25 cores MPJ either outperforms (Class
A) or obtains slightly lower performance, around 10%, (Class



 16

 8

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              CG (Class A)

NPB−MPI

NPB−MPJ

NPB−JAV

 16

 8

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              CG (Class B)

NPB−MPI

NPB−MPJ

NPB−JAV

 32

 16

 8

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              EP (Class A)

NPB−MPI

NPB−MPJ

NPB−OMP

 32

 16

 8

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              EP (Class B)

NPB−MPI

NPB−MPJ

NPB−OMP

 10

 8

 6

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              FT (Class A)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

 10

 8

 6

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              FT (Class B)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

Figure 3. CG, EP and FT kernels performance on the Infiniband multi-core cluster



 16

 8

 4

 2

 1

 0.5

 32 16 8 4 2 1

S
p

e
e

d
u

p

Number of Cores

              IS (Class A)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

 16

 8

 4

 2

 1

 0.5

 32 16 8 4 2 1

S
p

e
e

d
u

p

Number of Cores

              IS (Class B)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

 10

 8

 6

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              MG (Class A)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

 10

 8

 6

 4

 2

 1

 32 16 8 4 2 1

S
p

e
e
d

u
p

Number of Cores

              MG (Class B)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

Figure 4. IS and MG kernels performance on the Infiniband multi-core cluster

B) than MPI. Regarding Figure 6 results, the MPJ speedups
are poor for Class A problem size. Nevertheless, NPB-MPJ
obtains much better performance for Class B workload, where
it outperforms NPB-JAV and achieves up to a 50% of the NPB-
MPI scalability on 25 cores.

VI. CONCLUSIONS

This paper has presented NPB-MPJ, the first extensive
implementation of the standard benchmark suite, the NPB,
for Message-Passing in Java (MPJ). NPB-MPJ allows, as main
contributions: (1) the evaluation of the important number of
existing MPJ libraries; (2) the analysis of MPJ performance
against other Java parallel approaches; (3) the assessment of
MPJ versus native MPI performance; and (4) the compilation
of Java optimization techniques for parallel programming,
from which NPB-MPJ has especially benefited, obtaining
significant performance increases.

NPB-MPJ has been used in the performance evaluation
of two multi-core clusters. The analysis of the results has
shown that MPJ libraries are an alternative to native lan-
guages (C/Fortran) for parallel programming multi-core sys-
tems. However, significant performance bottlenecks have been
detected with the aid of NPB-MPJ, which can help MPJ

libraries developers to boost MPJ performance and bridge the
gap with native solutions. Furthermore, a more detailed perfor-
mance analysis would include a breakdown, easily supported
in NPB-MPJ, of the total time spent into computation and
communication.

ACKNOWLEDGMENTS

This work was funded by the Ministry of Education and
Science of Spain under Projects TIN2004-07797-C02 and
TIN2007-67537-C03-02 and by the Galician Government
(Xunta de Galicia) under Project PGIDIT06PXIB105228PR.
We gratefully thank CESGA (Galician Supercomputing Cen-
ter, Santiago de Compostela, Spain) for providing access to
the Infiniband cluster.

REFERENCES

[1] “Message Passing Interface Forum,” http://www.mpi-forum.org [Last
visited: November 2008].

[2] L. Baduel, F. Baude, and D. Caromel, “Object-oriented SPMD,” in Proc.
5th IEEE Intl. Symp. on Cluster Computing and the Grid (CCGrid’05),
Cardiff, UK, 2005, pp. 824–831.

[3] INRIA, “ProActive Website,” http://proactive.inria.fr [Last visited:
November 2008].

[4] “NAS Parallel Benchmarks,” http://www.nas.nasa.gov/Resources/Software/
npb.html [Last visited: November 2008].



 0

 400

 800

 1200

 1600

 2000

2516941

M
O

P
S

Number of Cores

              SP (Class A)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)

 0

 400

 800

 1200

 1600

 2000

2516941

M
O

P
S

Number of Cores

              SP (Class B)

NPB−MPI
NPB−MPJ(MPJ Express)
NPB−MPJ(mpiJava)

Figure 5. NPB SP performance on the Gigabit Ethernet multi-core cluster

 48

 32

 16

 9

 4

 1

2516941

S
p

e
e

d
u

p

Number of Cores

              SP (Class A)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

 48

 32

 16

 9

 4

 1

2516941

S
p

e
e

d
u

p

Number of Cores

              SP (Class B)

NPB−MPI

NPB−MPJ

NPB−OMP

NPB−JAV

Figure 6. NPB SP performance on the Infiniband multi-core cluster

[5] G. L. Taboada, J. Touriño, and R. Doallo, “Performance Analysis of Java
Message-Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters,”
in Proc. 5th IEEE Intl. Conf. on Cluster Computing (CLUSTER’03),
Hong Kong, China, 2003, pp. 118–126.

[6] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim, “mpiJava 1.2: API
Specification,” http://www.hpjava.org/reports/mpiJava-spec/ [Last vis-
ited: November 2008].

[7] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox, “MPJ: MPI-
like Message Passing for Java,” Concurrency: Practice and Experience,
vol. 12, no. 11, pp. 1019–1038, 2000.

[8] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, “mpiJava: an Object-
Oriented Java Interface to MPI,” in 1st Intl. Workshop on Java for
Parallel and Distributed Computing (IWJPDC’99), San Juan, Puerto
Rico, 1999, pp. 748–762.

[9] M. Baker, B. Carpenter, and A. Shafi, “MPJ Express: Towards Thread
Safe Java HPC,” in Proc. 8th IEEE Intl. Conf. on Cluster Computing
(CLUSTER’06), Barcelona, Spain, 2006, pp. 1–10.

[10] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann, “MPJ/Ibis: A
Flexible and Efficient Message Passing Platform for Java,” in 12th Eu-
ropean PVM/MPI Users’ Group Meeting (EuroPVM/MPI’05), Sorrento,
Italy, 2005, pp. 217–224.

[11] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Ja-
cobs, T. Kielmann, and H. E. Bal, “Ibis: a Flexible and Efficient Java-
based Grid Programming Environment,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 7-8, pp. 1079–1107, 2005.

[12] A. Kaminsky, “Parallel Java: A Unified API for Shared Memory and
Cluster Parallel Programming in 100% Java,” in Proc. 9th Intl. Workshop
on Java and Components for Parallelism, Distribution and Concurrency
(IWJCPDC’07), Long Beach, CA, 2007, p. 196a (8 pages).

[13] B.-Y. Zhang, G.-W. Yang, and W.-M. Zheng, “Jcluster: an Efficient

Java Parallel Environment on a Large-scale Heterogeneous Cluster,”
Concurrency and Computation: Practice and Experience, vol. 18, no. 12,
pp. 1541–1557, 2006.

[14] S. Genaud and C. Rattanapoka, “A Peer-to-Peer Framework for Robust
Execution of Message Passing Parallel Programs,” in 12th European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI’05), Sorrento, Italy,
2005, pp. 276–284.

[15] B. Amedro, D. Caromel, F. Huet, and V. Bodnartchouk, “Java ProActive
vs. Fortran MPI: Looking at the Future of Parallel Java,” in Proc. 10th
Intl. Workshop on Java and Components for Parallelism, Distribution
and Concurrency (IWJCPDC’08), Miami, FL, 2008, p. 134b (8 pages).

[16] K. Datta, D. Bonachea, and K. A. Yelick, “Titanium Performance and
Potential: An NPB Experimental Study,” in Proc. 18th Intl. Work-
shop on Languages and Compilers for Parallel Computing (LCPC’05),
Hawthorne, NY, 2005, pp. 200–214.

[17] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey,
“A Benchmark Suite for High Performance Java,” Concurrency: Practice
and Experience, vol. 12, no. 6, pp. 375–388, 2000.

[18] V. Getov, Q. Lu, M. Thomas, and M. Williams, “Message-passing
Computing with Java: Performance Evaluation and Comparisons,” in
Proc. 9th Euromicro Workshop on Parallel and Distributed Processing
(PDP’01), Mantova, Italy, 2001, pp. 173–177.

[19] B. Pugh and J. Spacco, “MPJava: High-Performance Message Passing
in Java using Java.nio,” in Proc. 16th Intl. Workshop on Languages
and Compilers for Parallel Computing (LCPC’03), College Station, TX,
2003, pp. 323–339.

[20] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, and
R. D. Lawrence, “Java Programming for High-Performance Numerical
Computing,” IBM Systems Journal, vol. 39, no. 1, pp. 21–56, 2000.


