
32

XARK: An EXtensible Framework
for Automatic Recognition
of Computational Kernels

MANUEL ARENAZ, JUAN TOURIÑO, and RAMON DOALLO

University of A Coruña

The recognition of program constructs that are frequently used by software developers is a power-
ful mechanism for optimizing and parallelizing compilers to improve the performance of the object
code. The development of techniques for automatic recognition of computational kernels such as
inductions, reductions and array recurrences has been an intensive research area in the scope of
compiler technology during the 90’s. This article presents a new compiler framework that, unlike
previous techniques that focus on specific and isolated kernels, recognizes a comprehensive col-
lection of computational kernels that appear frequently in full-scale real applications. The XARK
compiler operates on top of the Gated Single Assignment (GSA) form of a high-level intermediate
representation (IR) of the source code. Recognition is carried out through a demand-driven anal-
ysis of this high-level IR at two different levels. First, the dependences between the statements
that compose the strongly connected components (SCCs) of the data-dependence graph of the GSA
form are analyzed. As a result of this intra-SCC analysis, the computational kernels corresponding
to the execution of the statements of the SCCs are recognized. Second, the dependences between
statements of different SCCs are examined in order to recognize more complex kernels that result
from combining simpler kernels in the same code. Overall, the XARK compiler builds a hierarchical
representation of the source code as kernels and dependence relationships between those kernels.
This article describes in detail the collection of computational kernels recognized by the XARK
compiler. Besides, the internals of the recognition algorithms are presented. The design of the al-
gorithms enables to extend the recognition capabilities of XARK to cope with new kernels, and
provides an advanced symbolic analysis framework to run other compiler techniques on demand.
Finally, extensive experiments showing the effectiveness of XARK for a collection of benchmarks
from different application domains are presented. In particular, the SparsKit-II library for the
manipulation of sparse matrices, the Perfect benchmarks, the SPEC CPU2000 collection and the
PLTMG package for solving elliptic partial differential equations are analyzed in detail.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processor—Compilers,
optimization

This research was supported by the Ministry of Education and Science of Spain and FEDER funds of
the European Union (Projects TIN2004-07797-C02 and TIN2007-67537-C03), and by the Galician
Government (Projects PGIDIT05PXIC10504PN and PGIDIT06PXIB105228PR).
Authors’ address: Department of Electronics and Systems, Faculty of Computer Science, Campus
de Elviña s/n, 15071 A Coruña, Spain; email: {arenaz; juan; doallo}@udc.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/10-ART32 $5.00 DOI 10.1145/1391956.1391959 http://doi.acm.org/
10.1145/1391956.1391959

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:2 • M. Arenaz et al.

General Terms: Algorithms, Languages, Experimentation

Additional Key Words and Phrases: Automatic kernel recognition, demand-driven algorithms,
use-def chains, symbolic analysis, gated single assignment, strongly connected component

ACM Reference Format:
Arenaz, M., Touriño, J., and Doallo, R. 2008. XARK: An eXtensible framework for Automatic
Recognition of computational Kernels. ACM Trans. Prog. Lang. Syst. 30, 6, Article 32 (October
2008), 56 pages. DOI = 10.1145/1391956.1391959 http://doi.acm.org/10.1145/1391956.1391959

1. INTRODUCTION

The development and maintenance of applications that make an efficient use
of the computer architecture is a complex time-consuming task even for ex-
perienced programmers. The reasons for this are very varied. For instance,
the programming style usually needs to be adapted to the characteristics
of the compiler available in the target computer. This is a common practice
in the embedded arena where codes are often written with plenty of scalar
temporary variables in order to provide the compiler with an increased num-
ber of opportunities for optimization. Furthermore, in application domains
where performance requirements are paramount, the developer must use ei-
ther nonstandard extensions of programming languages or platform-optimized
libraries written in assembly language. These distinctive features often affect
code portability making it necessary to write different versions targeted for dif-
ferent computer architectures. The development of parallel applications adds
a higher level of complexity as, in addition, the programmer must cope with
the peculiarities of parallel computer architectures, namely, interconnection
network, shared or distributed memory, parallel programming paradigm, etc.

The cost of software development and software maintenance is highly influ-
enced by the uniprocessor and multiprocessor issues discussed above, specially
in application domains where hardware technology changes very fast (e.g., com-
puter graphics) because the code needs to be retargeted each time a different
architecture is launched. It is not a recent observation that compiler technology
plays an important role in reducing that cost. During the compilation process,
optimizing compilers apply automatic program analysis techniques that gather
information about the code. In the literature [Aho et al. 2006; Muchnick 1997;
Wolfe 1996; Allen and Kennedy 2002], automatic program analysis is addressed
from different perspectives, for instance, reaching definition analysis, depen-
dence analysis, live analysis, kernel recognition and inter-procedural analysis.
Although current optimizing compilers combine different types of techniques,
more sophisticated approaches are still needed in order to handle the complex-
ity of real applications.

Automatic kernel recognition is the process of discovering program con-
structs in the source code. In general, it can be sketched as matching a given
source code against a set of program constructs. This problem has been studied
for a wide variety of application areas that range from string matching and
replacement in text edition, through detection of induction and reduction vari-
ables in parallelizing compilers, up to program synthesis and modification in

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:3

software engineering. Thus, kernel recognition techniques can be classified in
four levels according to the information required in order to match the set of
program constructs [Kozaczynski et al. 1992]: the text level, the syntactic level,
the semantic level and the concept level. At the text level, programs are repre-
sented as ASCII files directly. The application of recognition techniques is lim-
ited to string matching and replacement. At the syntactic level, the source code
is parsed in order to build an abstract syntax tree (AST) that preserves the logi-
cal information only. Thus, information to increase the readability of the code or
assist parsing, such as indentation, keywords, comments, etc., is not captured.
Examples of applications are variable renaming and one-to-one translation be-
tween language constructs. At the semantic level, the semantic specification of
the programming language in which the program is written is captured by an-
notating the AST with data and control flow information. Constant propagation
and common subexpression elimination are standard compiler techniques that
fit in this category. In many situations, it is usually insufficient to understand
only the syntax and the semantics of a program. For instance, in software main-
tenance, the programmers must have gained an adequate understanding of the
functionality of the code, that is, what the code is supposed to do, before they
can modify it. This information is captured at the concept level, by annotat-
ing program ASTs with both semantic information and abstract concepts. The
concept level can be further divided. On the one hand, the domain-independent
concept level describes the functionality of the code from the point of view of
the programmer. Thus, the program is represented in terms of programming
concepts such as inductions, scalar reductions, irregular reductions or array
recurrences. Examples of kernel recognition techniques that work at this level
are Arenaz et al. [2003], Gerlek et al. [1995], Pottenger and Eigenmann [1995],
and Suganuma et al. [1996]. On the other hand, the domain-specific concept
level takes into account the knowledge about problem solving that is handled
by the experts in a given application domain. For instance, imposing constraints
on the access patterns of the read-only arrays of a scalar reduction, enables the
recognition of either the inner dot product of two vectors in the linear algebra
domain or the convolution of two signals represented as vectors in the signal
processing domain. Some approaches proposed in the literature are di Martino
and Iannello [1996], Keßler and Smith [1999], and Paul and Prakash [1994].
The resulting five levels of program information are shown in Figure 1. Note
that the levels are not mutually exclusive but inclusive. Therefore, recognizing
at a higher level requires recognizing at lower levels.

The focus of this article is the presentation of an extensible compiler frame-
work for automatic recognition of domain-independent concepts (from now on,
kernels). The main contribution is three-fold. First, the explanation of a com-
prehensive collection of kernels that appear in regular and irregular codes or-
ganized into families of kernels that share common properties. Some examples
are inductions, reductions, masked operations, irregular assignments, irregu-
lar reductions, array recurrences and consecutively written arrays. Note that
current optimizing compilers recognize these kernels in isolated stages that are
usually run in a strict, predefined order in different moments of the compila-
tion process. While such a strict separation into stages may simplify the design

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:4 • M. Arenaz et al.

Fig. 1. Five-level classification of kernel recognition techniques according to their requirements
about program information. For each level, typical examples of applications are presented.

and implementation, it generally leads to higher compilation-times than an all-
in-one recognition stage. Second, the description of the internals of the XARK
framework. XARK is based on a demand-driven classification method that ana-
lyzes the Gated Single Assignment (GSA) program representation. This article
presents an algorithm for the recognition of the kernels represented by the
strongly connected components of the data-dependence graph of the GSA form,
and an algorithm for the recognition of more complex kernels that arise when
the simpler kernels are combined in the same code. And third, extensive ex-
perimental results that show the efficacy of the recognition scheme for a set of
well-known benchmark suites are included. The experiments demonstrate that
XARK provides a more general solution than previous techniques for automatic
kernel recognition at the domain-independent concept level. In addition, they
show practical evidence that a relatively small set of kernels enables automatic
recognition across different application domains.

The rest of the article is organized as follows: Section 2 gives a general
overview of the XARK compiler. Basic ideas and terms that will be used in the
explanations are also introduced. Section 3 describes in detail the collection of
kernels considered in this work. Sections 4 and 5 present detailed descriptions
of the internals of the recognition algorithms. Section 6 shows the experimental
results. Section 7 discusses the robustness, the time complexity and the exten-
sibility of the XARK compiler. Finally, Section 8 compares the approach with
related work, and Section 9 concludes the paper.

2. OVERVIEW OF THE XARK COMPILER

Current optimizing and parallelizing compilers use several intermediate rep-
resentations (IRs) during the translation of the source code into object code
targeted for the underlying computer architecture. The level of abstraction of
these IRs vary greatly from low-level IRs that represent the code in a man-
ner that is very close to assembly language (e.g., RTL of GCC [GCC Inter-
nals]), to high-level IRs that resemble the original source code (e.g., GIMPLE

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:5

Fig. 2. Overview of the XARK compiler framework.

[Merrill 2003], Polaris IR [Faigin et al. 1994]). Code optimizations such as regis-
ter allocation and instruction scheduling are carried out on top of low-level IRs
because they are very dependent on the features of the underlying hardware
(e.g., set of instructions, special registers). In contrast, program transformations
for parallel code generation or locality improvement are usually implemented
on top of high-level IRs because the source code is represented in a clearer
manner.

Figure 2 presents an overview of the XARK compiler framework using as
a guide the example code at the lower left corner, which will also be used to
describe the XARK internals in detail throughout the paper. The code consists of
a loop doh that contains two kernels, namely, the computation of a consecutively
written array a (denoted by c/cwa), and the computation of the loop-variant
temporary variable t set to the value of the subscripted expression f(h) in each
loop iteration (denoted by c/subs). At run-time, consecutive entries of the array
a are written in consecutive memory locations determined by the value of the
linear induction variable i. The complexity of this loop comes from the fact that
i is incremented in one unit in those iterations where the condition c(h) is
fulfilled (denoted in c/subs by the prefix character c). In general, the condition
is not loop-invariant, so the value of i in each iteration cannot be calculated

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:6 • M. Arenaz et al.

as a function of the loop index variable h. The statement t=f(h) represents
temporary computations that do not introduce loop-carried dependences during
the execution of doh.

The framework is built on top of a high-level IR that captures the seman-
tic specification of the programming language. It consists of a forest of ab-
stract syntax trees (ASTs) that represent the statements of the source code, a
data-dependence graph that represents data dependences between the ASTs
where a variable is defined and used, and a control flow graph (CFG) where the
ASTs are organized in basic blocks according to the control flow of the program.
In Figure 2, the example loop is represented as a directed graph whose nodes
and edges denote ASTs and data dependences between ASTs, respectively. For
the sake of clarity, the details about the loop index variable (h) and about the
CFG have been omitted. Note that the data dependences are depicted as use-def
chains in order to emphasize the demand-driven nature of the algorithms used
in XARK. The recognition process is divided in three stages: (1) GSA translator
for building the Gated Single Assignment (GSA) form of the code; (2) SCC clas-
sification algorithm for the recognition of the simple kernels represented by the
SCCs of the GSA graph, that is, the data-dependence graph of the GSA form;
and (3) kernel graph classification algorithm for recognition of the compound
kernels associated with sets of mutually dependent simple kernels. The rest of
this section presents the key ideas behind each stage, and introduces the IRs
built by XARK in order to summarize the relevant information extracted at
each stage.

2.1 Translation into GSA Form

The construction of the XARK compiler begins with the translation of the source
code into the Gated Single Assignment (GSA) form [Ballance et al. 1990]. GSA
is an extension of the well-known Static Single Assignment (SSA) form [Cytron
et al. 1991] where reaching definition information of scalar and array variables
is represented syntactically. The construction of the GSA form involves two
main tasks: first, placement of special operators (called φ generically) at the
points of the program with multiple predecessors in the control flow graph;
and second, renaming of program variables so that the left-hand sides of the
assignment statements define distinct unique variables. Different kinds of φ

operators are distinguished according to the point of the program where they
are inserted:

—μ(xout , xin), which appears at loop headers and selects the initial xout and
loop-carried xin values of a variable.

—γ (c, xtrue, xfalse), which is located at the confluence node associated with a
branch (e.g., if-endif construct), and captures the condition c for each def-
inition to reach the confluence node: xtrue if c is fulfilled; xfalse, if c is not
satisfied.

—α(aprev, s, e), whose meaning is that the element s of an array variable a is
set to the value e and the other elements take the values of the previous
definition of the array, denoted as aprev.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:7

A detailed description of an efficient translation algorithm is beyond the scope
of this paper and can be consulted in Tu and Padua [1995]. A GSA-like repre-
sentation called Partial Array SSA was proposed in Knobe and Sarkar [1998,
2000]. However, the φ operators defined in GSA present several advantages
from the point of view of XARK. First, the γ operator contains a predicate that
captures the condition of an if-endif construct, which enables the analysis of
conditions during the execution of the SCC classification algorithm. And sec-
ond, the α operator provides a compact representation where array assignment
statements are associated with a unique SCC of the GSA graph. This prop-
erty prevents code explosion and widens the collection of kernels that can be
recognized by the SCC classification algorithm.

In Figure 2, the GSA form is shown just above the source code of the con-
secutively written array. Note that new statements with special operators μ,
γ and α have been inserted in the code, and that all the statements define
different variables. Thus, each definition of a source code variable is repre-
sented by a different variable in GSA form (as usual, GSA variables are built
by subscripting the source code variable). The construction of the GSA form
results in the following changes in the compiler IR. First, each AST of a source
code statement is replaced with the ASTs of the corresponding statements
in the GSA code. And second, new data dependences that capture reaching
definition information between the GSA statements are introduced. Figure 2
shows the forest of ASTs that represent the GSA code (the nodes are labeled
with the unique GSA variables of the statements). The dashed dotted lines
remark the relationship between the source code variables a, i and t, and the
corresponding GSA variables. Note that, in the source code, the use-def chains
are sets of edges that link each use to the reaching definitions. However, in GSA
form, all use-def chains are singletons. Thus, the GSA graph captures the infor-
mation about reaching definitions and preserves the data dependences between
a, i and t.

2.2 Recognition of Simple Kernels

The second stage of XARK decomposes the GSA code into a set of mutually
dependent kernels called simple kernels. The key observation is that simple
kernels correspond to the statements of the SCCs of the GSA graph, which cap-
ture the flow of values of the source code variables at run-time. Focus on the
statements of the GSA code of Figure 2 that represent the induction variable i,
namely, the statements where the GSA variables i0, i1, i2 and i3 are modified.
Starting at the μ operator that defines i1, the external definition i0 determines
the value at the beginning of the first loop iteration. On subsequent iterations,
i1 takes the value calculated within the loop body during the execution of the
statement i3=γ (c(h1),i2,i1). The γ operator represents that, if the condition
c(h1) is true in the loop iteration h1, then i3 takes the value i2 defined in the
body of the if-endif construct. Otherwise, it takes the value i1 defined by the
μ operator at the beginning of the iteration. The right-hand side of the state-
ment i2=i1+1 also fetches the value i1 assigned by the μ operator. Thus, the
flow of values corresponding to the induction variable i during the execution

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:8 • M. Arenaz et al.

of the loop is represented by an SCC in the GSA graph. Regarding the compu-
tation of array a, the key observation is that, unlike the source code statement
a(i)=t+2, the GSA statement a2=α(a1,i1,t2+2) defines the new value of array
a in terms of its previous value explicitly. This is achieved by means of the α

operator, which represents the definition of the element a2(i1) in terms of the
previous value of the whole array, in this case, the value a1 determined by the μ

operator inserted at the beginning of the loop body. The forest of ASTs and the
GSA graph depicted in Figure 2 show the SCCs associated with i and a. The
notation SCC(x1, . . . , xn) refers to the SCC composed of the ASTs related to the
GSA variables x1, . . . ,xn corresponding to different definitions of the source code
variable x.

The discussion above leads to an important conclusion: the computations
associated with every scalar variable defined in terms of itself and with ev-
ery array variable are represented by an SCC in the GSA graph. Thus, during
the second stage of the XARK compiler, the SCC classification algorithm an-
alyzes the forest of ASTs combined with the GSA graph and the control flow
graph, and determines the simple kernel associated with every source code
variable. In the example, three kernels are recognized: a conditional linear
induction (see Section 3.2) represented by the strongly connected component
SCC(i1, i2, i3) associated with the GSA statements i1=μ(i0,i3), i2=i1+1 and
i3=γ (c(h1),i2,i1); a conditional array assignment with a linear access pattern
(see Section 3.1) captured by the statements a1=μ(a0,a3), a2=α(a1,i1,t2+2)
and a3=γ (c(h1),a2,a1) of SCC(a1, a2, a3); and a conditional scalar assignment
(see Section 3.1) that represents a loop-variant sequence of values that are not
known at compile-time, which is captured by t2=f(h1) of SCC(t2), as well as
by t1=μ(t0,t3) and t3=γ (c(h1),t2,t1) of SCC(t1, t3).

The information extracted from the source code during the execution of
the SCC classification algorithm is summarized in an IR called kernel graph.
Figure 2 presents a simplified version of the kernel graph that only contains
the information that is relevant for this introductory section. The nodes and
the edges of the kernel graph correspond to SCCs and to use-def chains be-
tween statements of different SCCs, respectively. A detailed description of
the SCC classification algorithm and of the kernel graph will be presented in
Section 4.

2.3 Recognition of Compound Kernels

The third stage of the XARK compiler uses the kernel graph classification algo-
rithm in order to recognize compound kernels that consist of a set of mutually
dependent simple kernels. In the example of Figure 2, the isolated detection
of the simple kernels conditional linear induction (i) and conditional array as-
signment (a) does not provide enough information to recognize the consecutively
written array kernel. Thus, for the compiler to have success, the dependences
between both simple kernels have to be analyzed. In general, staged kernel
analysis approaches build kernels up from simple kernels (e.g., inductions) to
more complex kernels (e.g., reductions). However, staged approaches cannot rec-
ognize mutually dependent kernels, which require a comprehensive analysis of

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:9

cyclic kernel dependence directed graphs (e.g., to recognize consecutively writ-
ten arrays).

The kernel graph exhibits the minimal set of properties that characterize a
compound kernel. The so-called scenario consists of a set of properties of the
use-def chains between SCCs as well as a set of properties of the correspond-
ing SCCs. The key idea behind the kernel graph classification algorithm is
the identification of scenarios and, in the following, the execution of appropri-
ate compile-time tests to confirm or discard the existence of the correspond-
ing compound kernel. In Figure 2, the kernel graph contains a use-def chain
SCC(a1, a2, a3) → SCC(i1, i2, i3) annotated with the label < , 1 >. This in-
formation is used in the SCC classification algorithm to distinguish different
situations in which a variable is used and thus to classify the use of the variable
appropriately. The annotation of the use-def chain is a mechanism to carry out
this information to the kernel graph classification algorithm so that the sce-
narios that characterize compound kernels can be detected. In this example,
the label indicates that the left-hand side (denoted as) of the source code as-
signment statement a(i)=t+2 consists of one array reference whose subscript
expression is an occurrence of the induction variable i (denoted as 1 in the
label). Once this scenario has been detected, the compiler analyzes the control
flow graph to prove that every time a(i)=t+2 is executed, i=i+1 is also exe-
cuted. Furthermore, the compiler checks that i is incremented in one unit in
every loop iteration where c(h) is fulfilled. In codes such as that of the example
where this compile-time test is successful, XARK recognizes a consecutively
written array kernel. A detailed description of the kernel graph classification
algorithm will be presented in Section 5. Note that in order to capture the infor-
mation about the initialization and updating of induction variables and about
the access patterns of array variables, XARK uses the chains of recurrences
formalism first introduced in Zima [1986] and later improved in Zima [1995],
and van Engelen [2001].

The results of this stage are summarized in the code class [[c/cwa → c/subs]],
shown above the kernel graph in Figure 2. The code class exhibits the two
kernels computed in the loop: the computation of the consecutively written
array a (c/cwa), and the computation of the temporary variable t (c/subs).
In addition, the code class captures the dependence relationship between the
kernels, which is represented by a use-def chain → indicating that the values
stored in t are used in the computation of a.

Overall, the code class provides the compiler with a hierarchical description
of the program in terms of the kernels computed in the source code and the
dependence relationships between such kernels. In addition, all the informa-
tion extracted from the source code during the execution of the SCC and kernel
graph classification algorithms is annotated in the intermediate representa-
tions built by the compiler. Thus, the code class abstracts the implementation
details and, at the same time, meets the information requirements of other
passes of parallelizing and optimizing compilers. Examples of successful ap-
plication of XARK in the scopes of parallel code generation and compile-time
prediction of memory hierarchy behavior have been presented in Arenaz et al.
[2004] and Andrade et al. [2007], respectively.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:10 • M. Arenaz et al.

3. COLLECTION OF KERNELS

In the early stages of this work the SparsKit-II library [Saad 1994] and several
finite element numerical codes were analyzed manually in order to identify a
set of kernels that are frequently used by software developers.

A program consists of a set of variables that represent memory locations
where data are stored, and a set of statements that specify the way data are
manipulated. In a similar manner, a kernel is related to a subset of variables
and statements of a program. It should be noted that a kernel can be coded in
many different ways. For instance, the two codes shown below carry out the
same computations:

do h=1,n
a(h)=. . .

enddo

a(1)=. . .
. . .

a(n)=. . .

The loop-based version is used extensively in scientific applications that work
with large arrays. However, in embedded applications these loops are often un-
rolled in order to provide the compiler with more opportunities for optimization.
It is the job of the compiler to recognize the variations of a given kernel, even in
programs where the statements of the kernel are spread over the source code.

In order to describe the collection of kernels, some properties are introduced.

Definition 3.1. Let {v1, . . . , vn} be the variables of a kernel. It is a scalar
kernel if {v1, . . . , vn} are scalar variables. It is an array kernel if {v1, . . . , vn} are
array variables.

Definition 3.2. Let {v1, . . . , vn} be the variables of a kernel. It is a gated
kernel if there is at least one occurrence of vk (k ∈ {1 . . . n}) in the condition of
an if-endif construct that contains statements of the kernel. Thus, vk influences
the control flow of the statements of the kernel. Otherwise, it is a non-gated
kernel.

Definition 3.3. Let {S1, . . . , Sn} be the set of statements of a kernel. It is a
conditional kernel if ∃Sk (k ∈ {1 . . . n}) such that Sk belongs to the body of an
if-endif construct. Otherwise, it is a non-conditional kernel.

The rest of this section describes the collection of kernels organized into the
eight families presented in Table I, detailing whether the kernels included in
each family are scalar/array, gated/non-gated and conditional/nonconditional.
The description is illustrated with examples of kernels that appear in source
codes extracted from real applications.

3.1 Assignments

The simplest kernels considered in this work consist of storing a value in a given
memory location. Within a program, this memory location may be accessed
using either a scalar or an array variable. Thus, scalar assignments and array
assignments are distinguished, respectively.

Let the statement v = e represent a scalar assignment that stores the value of
expression e in the memory location given by the scalar variable v, where e does
not contain any occurrence of v. Both non-conditional scalar assignment and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:11

Table I. Collection of Kernel Families

Kernel Family S
ca

la
r

A
rr

ay

G
at

ed

N
on

-g
at

ed

C
on

di
ti

on
al

N
on

co
n

di
ti

on
al

Assignments (Section 3.1)
scalar assignment

√ √ √ √
regular array assignment

√ √ √ √
irregular array assignment

√ √ √ √
Inductions (Section 3.2)

linear induction
√ √ √ √

polynomial induction
√ √ √ √

geometric induction
√ √ √ √

Maps (Section 3.3)
scalar map

√ √ √ √
regular array map

√ √ √ √
irregular array map

√ √ √ √
Reductions (Section 3.4)

scalar reduction
√ √ √ √

regular array reduction
√ √ √ √

irregular array reduction
√ √ √ √

scalar minimum/maximum reduction
√ √ √

regular array minimum/maximum reduction
√ √ √

irregular array minimum/maximum reduction
√ √ √

Masks (Section 3.5)
scalar find&set

√ √ √
regular array find&set

√ √ √
irregular array find&set

√ √ √
Array recurrences (Section 3.6)

regular array recurrence
√ √ √ √

irregular array recurrence
√ √ √ √

Reinitialized kernels (Section 3.7)
induction

√ √ √ √
map

√ √ √ √ √
reduction

√ √ √ √ √ √
mask

√ √ √ √
array recurrence

√ √ √ √
Complex written arrays (Section 3.8)

consecutively written array
√ √ √ √

consecutively reduced array
√ √ √ √

consecutively recurrenced array
√ √ √ √

segmented consecutively written array
√ √ √ √

segmented consecutively reduced array
√ √ √ √

segmented consecutively recurrenced array
√ √ √ √

conditional scalar assignment kernels can be found in real codes. For brevity,
the notation (non-)conditional will be used throughout the article to refer to
both the conditional and the non-conditional kernels. The computation of irow
in the loop doh of Figure 3(a) is an example of conditional scalar assignment.

Let the statement a(s) = e represent an array assignment that stores the
value of expression e in the memory location given by the sth entry of the array

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:12 • M. Arenaz et al.

Fig. 3. Examples of kernels from real codes.

variable a, where there is not any occurrence of variable a in e. Different types
of array assignments will be distinguished according to the properties of the
subscript s. Parallelizing compilers have traditionally focused on array assign-
ments that appear in regular codes, where s can be rewritten as a linear, poly-
nomial or geometric function of the loop index. These kernels are called regular
array assignments. The computation of array y in the loop doh of Figure 3(b)
is a nonconditional regular array assignment. In particular, the regular access
pattern h is a linear induction (see Section 3.2) given by the loop index of doh.
Irregular codes contain irregular array assignments where s is a loop-variant
subscripted expression whose value cannot be determined at compile-time. The
computation of array iao in doj of Figure 3(c) is a nonconditional irregular ar-
ray assignment. Note that i+1 is a subscripted expression because the scalar
variable i takes the value of a different array entry, perm(j), at the beginning
of each doj iteration.

3.2 Inductions

In the literature, the term induction is used to represent the type of scalar,
integer-valued variables that are updated in all the iterations of a loop, and for

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:13

which a well-defined closed form expression can be calculated. In this article,
this term will be used in a more general sense. If the variable is updated in every
loop iteration, it is a nonconditional induction. In real programs, however, the
variable can be updated conditionally during the execution of the loop. In this
case, it is a conditional induction.

The simplest form of induction is (non)conditional linear induction, where a
scalar, integer-valued variable is defined in terms of itself and some combina-
tion of integer-valued loop-invariant expressions; occurrences of other induction
variables are not allowed. Note that loop-invariants usually involve array refer-
ences, which may even contain subscripted subscripts. The recognition of more
complex inductions was shown to be of interest for the automatic analysis of
real programs [Gerlek et al. 1995]. Thus, (non)conditional polynomial induc-
tions are characterized by the addition of another linear induction variable to
the induction variable, and (non)conditional geometric induction by the prod-
uct of the induction variable and an invariant. In the literature, these kernels
are generically called basic inductions because the variable is defined in terms
of itself. When the variable is defined in terms of other linear, polynomial or
geometric induction variables, they are called derived inductions. The compu-
tation of the scalar variable ko in the inner loop dok of Figure 3(d) is a basic
non-conditional linear induction.

3.3 Maps

A distinguishing characteristic of inductions is that there is a closed form func-
tion that allows the computation of the next value of the variable starting from
its initial value (nonconditional inductions), or from its current value (condi-
tional inductions). In real codes, sequences of values that do not have such a
closed form are often used. This kind of computations will be referred to as
maps.

A map is a kernel where a variable is assigned the value of an array refer-
ence whose subscript expression contains an occurrence of the variable. Like
derived inductions, derived maps are defined in terms of the variable of another
map kernel. The kernel is called (non)conditional scalar map if the variable is
a scalar, and either (non)conditional regular array map or (non)conditional
irregular array map if it is an array. Different types of regular (e.g., linear,
polynomial, geometric) and irregular access patterns are allowed. An example
of non-conditional regular array map is shown in Figure 4(a).

3.4 Reductions

A reduction is usually defined as the process of obtaining a single element
by combining the elements of a vector [Allen and Kennedy 2002]. Well-known
examples are adding the elements of a vector (sum reduction), and finding the
minimum/maximum element in a vector (minimum/maximum reduction). In
this paper a definition that only takes into account the syntactical properties
of the program constructs is presented.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:14 • M. Arenaz et al.

Fig. 4. Examples of kernels from real codes (cont.).

3.4.1 Scalar/Array Nongated Reductions. A (non-)conditional scalar re-
duction is a kernel with one scalar variable that is defined in terms of itself
and at least one loop-variant subscripted expression. The scalar variable may
be either integer-valued or floating-point-valued. Derived scalar reductions are
also defined in terms of the variable of a different scalar reduction. An abstract
representation of a scalar reduction is v = v ⊕ e, where v is the reduction vari-
able, ⊕ is the reduction operator and e is an expression with zero occurrences of
v. The inner loop dok of Figure 3(b) contains a nonconditional scalar reduction
that involves subscripted subscripts of several indirection levels.

The kernel (non-)conditional array reduction is defined in a similar man-
ner. Let the statement a(s) = a(s) ⊕ e represent the computation of the sth
entry of the array variable a, where e does not contain any occurrence of a.
The characteristics of s lead to distinguish between regular array reductions
and irregular array reductions. The loop nest doi of Figure 4(b) calculates a
conditional irregular array reduction (array variable iwk).

3.4.2 Scalar/Array Gated Reductions. Another well-known reduction op-
eration is the computation of the minimum (or maximum) value of a set of val-
ues. It is usually implemented as a loop that, in each iteration, compares the
value of the reduction variable with an element of the set. In comparison with
non-gated reductions, the distinguishing characteristic is the implementation
of the reduction operator using if-endif constructs that check the value of the re-
duction variable. This type of kernel is called either scalar minimum reduction
or scalar maximum reduction. The code of Figure 3(a) calculates a scalar min-
imum reduction where minlen is the reduction variable and {ia(h+1)-ia(h);
h=2. . .nrow} is the set of values. A variant of a minimum/maximum reduc-
tion that is frequently used in real codes consists of gathering additional

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:15

information about the reduction variable, for instance, the position of the min-
imum (or the maximum) value within the set. This variant of the kernel will
be termed scalar minimum/maximum with index reduction. An example in-
volving the scalars minlen and irow is shown in Figure 3(a). It should be noted
that array minimum/maximum reductions, with and without index, appear in
real codes as well. Regular and irregular access patterns to the array variable
are also allowed. An example is the computation of the minimum with index of
each row of a matrix.

3.5 Masks

Masks are conditional gated kernels that modify the value at a memory location
if its content fulfills a Boolean condition. When a scalar variable is involved,
the kernel is called scalar find&set. A typical example is a loop that contains
a set of statements that are executed only in the first loop iteration. When the
condition is true, such statements are executed and the condition is set to false
to avoid the execution in the subsequent loop iterations. The masks that involve
array variables are called regular array find&set or irregular array find&set.
The loop doh of Figure 4(c) contains a regular array find&set where the array
variable diag presents a linear access pattern.

3.6 Array Recurrences

The non-gated kernels described in Sections 3.1–3.4 represent assignment and
reduction operations. Given the computation a(s) = e, they cover the cases
where there are zero and one occurrences of a(s) in e, respectively. There is a
remaining case where e contains a set of occurrences a(s1), . . . , a(sm) so that, in
the general case, the subscripts s, s1, . . . , sm are different. This kernel is called
(non-)conditional array recurrence. Access patterns to the array variable may be
either regular or irregular. Note that in the classical sense, an array recurrence
satisfies the additional constraint that at least one subscript is symbolically
less than s, which is an important property in the scope of application domains
such as parallelizing compilers. The computation of the array iao in doj of
Figure 4(d) is a nonconditional regular array recurrence with a linear access
pattern.

3.7 Reinitialized Kernels

Real codes may contain more elaborate program constructs built from kernels
described in the previous sections. From a graphical point of view, they can be
interpreted as a point in a multidimensional space where the kernels are the
values represented in the axes. Thus, a reinitialized kernel is as follows: first,
an assignment (Section 3.1) that sets a scalar/array variable to a given value
at the beginning of every iteration of a loop; and second, an induction, a map,
a reduction, a mask or an array recurrence (Sections 3.2–3.6) that updates
the value of the scalar/array variable during the execution of an inner loop.
A reinitialized non-conditional linear induction is presented in the loop doii
of Figure 3(d) using ko as scalar variable. Note that, at run-time, ko is set
to the value of the subscripted expression iao(perm(ii)) at the beginning of

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:16 • M. Arenaz et al.

each doii iteration, the variables iao and perm being loop-invariant arrays. A
reinitialized non-conditional scalar reduction to compute a temporary sum t is
shown in Figure 3(b).

3.8 Complex Written Arrays

Another interesting family is called complex written array. It consists of a scalar
kernel (e.g., induction, reinitialized induction, scalar reduction) that defines
the array entries to be modified during the execution of the code, and an ar-
ray assignment whose left-hand side subscript is a linear function of the scalar
variable. When the scalar kernel is a (non-)conditional linear induction of step
one, the kernel is called (non-)conditional consecutively written array [Lin and
Padua 1998]. Examples are shown in loop dok of Figure 3(d) involving the lin-
ear induction variable ko as the subscript of the arrays ao and jao. When the
scalar kernel is a reinitialized linear induction of step one, it is called (non)
conditional segmented consecutively written array. Note that in the scope of
the outer loop doii of Figure 3(d), ao and jao fit into this category as ko is
a reinitialized linear induction variable of step one. The variety of complex
written arrays considered in this work is shown in Table I, including kernels
that involve an array reduction or an array recurrence instead of an array
assignment.

4. RECOGNITION OF SIMPLE KERNELS

In general, the computations carried out during the execution of a code can
be represented as a set of mutually dependent simple kernels. This issue was
illustrated in the overview of Section 2 using as a guide a loop that computes
a consecutively written array kernel. In that section, the recognition of simple
kernels through the analysis of the strongly connected components (SCCs) that
appear in the GSA graph was introduced. From the great variety of kernels
shown in Table I, the SCC classification algorithm addresses the recognition
of assignments, inductions, maps, non-gated reductions, some array gated re-
ductions, array masks, array recurrences and reinitialized array kernels. Note
that, for instance, the recognition of scalar minimum/maximum reductions,
scalar masks, reinitialized scalar kernels and complex written arrays cannot
be accomplished in this stage because the SCCs do not contain enough infor-
mation. The recognition of these kernels is carried out by the kernel graph
classification algorithm presented later in Section 5.

The rest of this section is organized as follows. Definitions and notations
for the characterization of the simple kernels represented by the SCCs of GSA
graphs as well as the dependences between them are introduced in Section 4.1.
A taxonomy of SCC classes that capture the properties of the different types
of simple kernels is formally defined in Section 4.2. The SCC classification
algorithm for the construction of the kernel graph is described in detail in
Section 4.3. Finally, a case study extracted from the example of Figure 2 is
presented in Section 4.4.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:17

Fig. 5. Search of SCCs in GSA graphs considering conditional use-def chains.

4.1 Definitions and Notations

The following terminology will be used throughout this article: source code state-
ment will refer to a statement of the source code; GSA statement (or simply
statement) will be used for a statement of the GSA form; finally, μ-statement,
γ -statement and α-statement will denote GSA statements that contain μ, γ

and α operators, respectively.
An important property of the techniques for automatic kernel recognition

is the ability to recognize the variations of a kernel, even in the presence of
complex control flows or in those implementations where the source code state-
ments of the kernel are spread over the program. Techniques that hinge on the
identification of SCCs in SSA forms were shown to be effective for this purpose
because they use the data-dependence information to drive the recognition pro-
cess. The SCC classification algorithm that will be presented in this section is
based on the following definition of SCC in the context of GSA graphs.

Definition 4.1. Let x → y be a use-def chain of the GSA graph that repre-
sents a reaching definition of the GSA variable y for a use in a GSA statement
that defines the variable x. It is a conditional use-def chain if x is defined in
a γ -statement whose conditional expression contains the use of the reaching
definition y .

Definition 4.2. A strongly connected component, SCC(x1, . . . , xn), is a max-
imal subgraph of the GSA graph where every node in the subgraph can be
reached by every other node in the subgraph following nonconditional use-def
chains only, that is, ignoring conditional use-def chains.

In order to illustrate how Definition 4.2 enables the recognition of
simple kernels, consider the example of Figure 5, where the conditional
use-def chains introduced by the condition max1<a(i1) are depicted as
dashed edges in the GSA graph. Considering conditional use-def chains,
one SCC(i1, i2, i3, max1, max2, max3) that represents both a scalar maximum
reduction (variable max) and a conditional induction variable i that influ-
ences the control flow arises. However, if the conditional use-def chain is
ignored following Definition 4.2, two separate components SCC(i1, i2, i3)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:18 • M. Arenaz et al.

and SCC(max1, max2, max3) that distinguish the two simple kernels are
identified.

In order to increase the robustness of the SCC classification algorithm, the
following property of the SCCs is defined (see Section 7.1 for a discussion about
the robustness of the recognition algorithms).

Definition 4.3. Let y1, . . . , ym be a subset of the GSA variables of a strongly
connected component SCC(x1, . . . , xn) such that yi ∈ {x1, . . . , xn} and yi is not
defined in a μ-statement or γ -statement. The cardinality of SCC(x1, . . . , xn),
|SCC(x1, . . . , xn)|, is the number of different source code variables represented
by y1, . . . , ym.

In Section 3, some interesting properties of the kernels were introduced (see
Definitions 3.1–3.3). Accordingly, the same properties are defined in the scope
of an SCC in order to distinguish the different types of simple kernels that
can be recognized by the SCC classification algorithm. This article restricts
the cardinality of the SCCs to zero and one, as experiments conducted on real
programs demonstrated that they enable the recognition of most of the kernels
(see Section 6 for the details).

Definition 4.4. Let x be a source code variable represented by a
cardinality-0 or cardinality-1 SCC(x1, . . . , xn). The component is a scalar
SCC if x is a scalar variable, and it is an array SCC if x is an array variable.
The notations SCCS

C (x1, . . . , xn) and SCCA
C (x1, . . . , xn) will represent a scalar

and an array SCC with cardinality C, respectively.

Definition 4.5. Let c1, . . . , cm be the set of conditional expressions associ-
ated with the γ -statements of a cardinality-0 or cardinality-1 SCC(x1, . . . , xn).
It is a gated SCC if ∃xk (k ∈ {1 . . . n}) such that there is an occurrence of
xk in c1, . . . ,cm, that is, if xk influences the control flow of the statements of
SCC(x1, . . . , xn). Otherwise, it is a non-gated SCC.

Definition 4.6. Let SCC(x1, . . . , xn) be a cardinality-0 or cardinality-1 SCC.
It is a conditional SCC if SCC(x1, . . . , xn) contains at least one γ -statement,
that is, if SCC(x1, . . . , xn) contains at least one assignment statement enclosed
within an if-endif construct. Otherwise, it is a non-conditional SCC.

Other types of SCCs that are useful for automatic program analysis in XARK
are distinguished. The criteria are related to the number of μ, γ and α state-
ments that the SCC contains.

Definition 4.7. An SCC(x1, . . . , xn) is trivial if it consists of exactly one GSA
statement (n = 1). Otherwise, it is non-trivial (n > 1).

Definition 4.8. An SCC(x1, . . . , xn) is virtual if it is composed of μ or γ

statements only. Otherwise, it is non-virtual.

As mentioned in Section 2.2, the SCC classification algorithm addresses the
recognition of simple kernels through the analysis of the forest of ASTs of the
GSA statements jointly with the GSA graph and the control flow graph. In an
AST, a tree node represents an operator (e.g., assignment, fetch, array reference,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:19

plus, product), and the children of a node are the operands. Leaf tree nodes
capture either invariant values (e.g., constants), or fetches of variables whose
values are calculated in a different GSA statement.

Definition 4.9. Given a node of the AST that represents a GSA statement
of a program, the level of the node is the number of nodes contained in the path
from the root of the AST to that node. The indirection level of the node is the
number of nodes in the path from the root of the AST to that node that represent
array references in the source code of the program.

Definition 4.10. Let ⊕ be an operator represented by a tree node of the
AST of a GSA statement. The operator class, [[⊕]], is the type of kernel that is
calculated as a result of executing the operator.

Definition 4.11. Let SCC(x1, . . . , xn) be a strongly connected component.
The SCC class, [[SCC(x1, . . . , xn)]], is the type of kernel computed by executing
the source code statements represented by the GSA statements where x1,. . .,xn
are defined.

Different abbreviations are used for the SCC classes of scalar and array
SCCs. For the class of a scalar nongated component [[SCCS

C (x1, . . . , xn)]], a pair
χ/θ is used, where χ ∈ {c, nc} indicates the conditionality (see Definition 4.6)
and θ is the type of scalar kernel listed in the taxonomy of SCCs presented
later in Figure 6. For instance, nc/lin denotes a non-conditional linear in-
duction. Let a(s1, . . . , sd) = e represent the array kernel computed by an ar-
ray component SCCA

C (x1, . . . , xn). The class of an array nongated component
[[SCCA

C (x1, . . . , xn)]] is denoted by a triplet χ/τ/θ1 : · · · : θd where χ ∈ {c, nc} is
the conditionality, τ is the type of array operation listed in Figure 6 (see array
assignment, array reduction, array recurrence or array map in Section 3), and
θi = [[si]] with i ∈ {1, . . . , d } is the type of scalar kernel that represents the ac-
cess pattern in the ith dimension of the d -dimensional array a. An example of
array non-gated SCC class is c/reduc/subs, which corresponds to a conditional
irregular array reduction of a unidimensional array. Similar notations are used
for gated SCC classes, the difference being that conditionality is not specified
because all gated SCCs are conditional. All the possibilities for both scalar and
array SCC classes will be introduced in Section 4.2.

The results of the SCC classification algorithm are summarized in the kernel
graph IR (see the overview of Figure 2), which exhibits both the simple kernels
captured by the SCCs and the dependences between them. In the following,
the concept of dependence between statements is generalized to the concept
of dependence between SCCs, different types of dependences between SCCs
are introduced, and the kernel graph is formally defined. Unless otherwise
stated, for the purpose of the recognition of simple kernels, dependences will
be represented and referred to as use-def chains in order to emphasize the
demand-driven nature of the SCC classification algorithm.

Definition 4.12. Let SCC(x1, . . . , xn) and SCC(y1, . . . , ym) be two SCCs.
A SCC use-def chain, SCC(x1, . . . , xn) → SCC(y1, . . . , ym), exists if the
GSA graph contains at least one use-def chain x j → yk (with j ∈ {1 . . . n}
ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:20 • M. Arenaz et al.

Fig. 6. Taxonomy of SCCs in GSA graphs. Abbreviations of SCC classes are written in italic within
braces. The notation θ1 : · · · : θd represents the classes of the subscripts of a d -dimensional array
variable of an array SCC, the subscript classes being invariant, linear, polynomial, geometric,
reduction, map, subscripted or unknown.

and k ∈ {1 . . . m}) between two GSA statements of SCC(x1, . . . , xn) and
SCC(y1, . . . , ym), respectively.

The terms, use statement, definition statement, use-SCC, and definition-SCC
(abbreviated as def-SCC), will denote the statement where x j is defined,
the statement where yk is defined, SCC(x1, . . . , xn) and SCC(y1, . . . , ym),
respectively.

Several classes of SCC use-def chains will be distinguished in the kernel
graph. The goal of these classes is to exhibit those dependences that will provide
the kernel graph classification algorithm with scenarios for the recognition of
compound kernels (see Section 5 for the details).

Definition 4.13. Let SCC(x1, . . . , xn) → SCC(y1, . . . , ym) be an SCC
use-def chain between two cardinality-0 or cardinality-1 SCCs, and
let x j → xk (with j ∈ {1 . . . n} and k ∈ {1 . . . m}) be the correspond-
ing use-def chain between GSA statements. A conditional SCC use-def
chain SCC(x1, . . . , xn) � SCC(y1, . . . , ym) exists if x j → yk is a condi-
tional use-def chain (see Definition 4.1). Otherwise, other two classes
of chains are distinguished. It is a structural SCC use-def chain
SCC(x1, . . . , xn) ⇒ SCC(y1, . . . , ym) if one of the following properties is
fulfilled:

(1) The variables x1,. . . , xn, y1, . . . , ym are definitions of one source code variable.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:21

(2) SCC(x1, . . . , xn) is an array SCC with θ1 : · · · : θd as the classes of the
subscripts; SCC(y1, . . . , ym) is a scalar SCC of class χ/θ ; x j is defined in an
α-statement whose left-hand side subscript contains a use of the reaching
definition yk ; and ∃r ∈ {1 . . . d } such that θ = θr .

Otherwise, it is a non-structural SCC use-def chain, represented by the
notation SCC(x1, . . . , xn) � SCC(y1, . . . , ym).

Definition 4.14. Given a program in GSA form, the kernel graph is defined
as the graph whose nodes are the SCCs that appear in the GSA graph (in
accordance with Definition 4.2), and whose edges are the conditional, structural
and nonstructural SCC use-def chains.

In the kernel graph, the SCC use-def chains are attached a pointer to their
corresponding use-def chains between GSA statements. In addition, they are
annotated with information that enables the identification of scenarios in the
kernel graph classification algorithm presented later in Section 5. Note that
the properties (1) and (2) of Definition 4.13 will enable the identification of the
scenarios that characterize reinitialized scalar kernels and complex written
arrays, respectively.

4.2 Taxonomy of SCCs

The SCCs that appear in GSA graphs can be classified according to the charac-
teristics of the statements that compose each SCC. A taxonomy of SCC classes
is presented in Figure 6. The following criteria are used: scalar/array (Defini-
tion 4.4), gated/non-gated (Definition 4.5) and conditionality (Definition 4.6).

4.2.1 Scalar Non-Gated SCCs. These SCCs may be trivial or non-trivial
(Definition 4.7). Nontrivial SCCs capture basic inductions, scalar non-gated
reductions and scalar maps as follows:

— (non)conditional/linear (see Section 3.2). The operations within the SCC
are a linear combination of the source code variable and invariant expres-
sions. The loop dorow of Figure 7 contains a non-conditional linear induc-
tion that is represented by a non-gated component SCCS

1 (k1, k2) of class
non-conditional/linear.

— (non)conditional/polynomial (see Section 3.2). The operations are a linear
combination of the source code variable, invariants and one linear induction
variable represented by a different SCC.

— (non)conditional/geometric (see Section 3.2). The source code variable is
multiplied by an invariant value.

— (non)conditional/reduction (see Section 3.4). The operations within the
SCC involve the source code variable and at least one non-invariant array
reference.

— (non)conditional/map (see Section 3.3). The right-hand sides of scalar state-
ments consist of one array reference only. Besides, the subscripts of such array
reference consist of a fetch of the variable defined in the SCC. An example

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:22 • M. Arenaz et al.

Fig. 7. Computation of the minimum with index of each row of a sparse matrix.

code is the traversal of a linked list implemented by means of an array, that
is, i=next(i) within a loop body.

— (non)conditional/unknown, which captures those SCCs whose kernel does
not match any other scalar non-gated SCC class.

Regarding trivial scalar non-gated SCCs, they represent derived inductions
(linear, polynomial and geometric), derived scalar reductions and derived scalar
maps. The operations performed in trivial SCCs are not defined in terms of the
source code variable of the SCC, but in terms of the variables of other SCCs.
The classification rules described above for non-trivial SCC classes also apply to
trivial ones. Furthermore, two additional trivial SCC classes are distinguished:

— (non)conditional/invariant. Let {v1, . . . , vn} be the set of scalar/array vari-
ables that are referenced in the statements of the SCC. The SCC is invariant
if ∀vk (k ∈ {1 . . . n}), vk is not defined within the fragment of code (e.g., a loop
body).

— (non)conditional/subscripted. Let {v1, . . . , vn} be the set of scalar/array vari-
ables that are referenced in the statements of the SCC. The SCC is sub-
scripted if ∃vk (k ∈ {1 . . . n}) such that it is a fetch of an array variable whose
subscript is not invariant (e.g., a loop-variant expression that changes its
value in each loop iteration).

Some examples of cardinality-0 and cardinality-1 scalar non-gated SCCs
are presented in Figure 7. The computation of the scalar tl in the scope
of the inner loop doh is an example of conditional scalar assignment (see

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:23

Section 3.1). Its representation in terms of SCCs is as follows. On the
one hand, there is a cardinality-1 trivial component SCCS

1 (tl4) of class
non-conditional/subscripted that captures the loop-variant nature of the val-
ues assigned to tl. On the other hand, as tl is modified within an if-endif
construct, a cardinality-0 virtual component SCCS

0 (tl3, tl5) that captures the
conditionality of the kernel appears in the GSA graph as well.

4.2.2 Array Non-Gated SCCs. Let a(s1, . . . , sd) = e be an array assignment
statement that represents the computations carried out in an array SCC. Dif-
ferent classes are distinguished according to the number of occurrences of array
a that appear in the right-hand side expression e at an indirection level 0 (see
Definition 4.9):

— (non)conditional/assignment/θ1 : · · · : θd (see Section 3.1), if there are zero
occurrences; where θi = [[si]], i ∈ {1, . . . , d }.

— (non)conditional/reduction/θ1 : · · · : θd (see Section 3.4), if there is one oc-
currence matching a(s1, . . . , sd).

— (non)conditional/recurrence/θ1 : · · · : θd (see Section 3.6), if e contains a set
of array references {a(s1

1 , . . . , s1
d), . . . , a(sr

1, . . . , sr
d)} such that at least one of

them, a(sk
1 , . . . , sk

d) with k ∈ {1 . . . r}, fulfills that s1
= sk
1 or s2
= sk

2 or . . . or
sd
= sk

d .

An additional class where the occurrences of a appear in the right-hand side
expression e at indirection level greater than 0 (i.e., within the subscript of an
array reference) is distinguished:

— (non)conditional/map/θ1 : · · · : θd (see Section 3.3), if e consists of an array
reference that matches b(. . . , a(s1, . . . , sd), . . .), where b is a multidimensional
array different from a.

The notation captures the access pattern corresponding to each dimension of
the left-hand side array reference a(s1, . . . , sd), which are determined by ap-
plying the rules of trivial scalar non-gated SCCs. Thus, the following types
of access patterns are distinguished: invariant, linear, polynomial, geomet-
ric, reduction, map, subscripted and unknown. The computations of array l in
Figure 7 are represented by means of an array non-gated SCCA

1 (l1, l2) of class
non-conditional/assignment/linear. The example also contains array refer-
ences whose subscripts fit into the classes linear and subscripted, for instance,
begin(row) and a(f(h)), respectively.

4.2.3 Scalar Gated SCCs. They appear in loops where a scalar variable
is defined inside an if-endif construct whose condition contains occurrences of
that variable. Gated SCCs are all conditional as they contain at least one γ -
statement. Let v = e represent the source code assignment statement of a scalar
gated SCC. Let c be the condition defined by the γ -statements of the SCC. The
following classes are distinguished:

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:24 • M. Arenaz et al.

—minimum or maximum (see Section 3.4.2). The condition c matches v < e,
v ≤ e, e > v or e ≥ v for minimum, where e does not contain occurrences of v.
For maximum, it matches e < v, e ≤ v, v > e or v ≥ e.

—find&set (see Section 3.5). The condition does not fulfill the properties of a
minimum or a maximum.

It should be noted that scalars defined within if-endif constructs are repre-
sented by a trivial SCC that captures the scalar assignment statement, and
a virtual gated SCC that contains the information about the condition. Thus,
the SCC classification algorithm classifies the SCC as a minimum, maximum
or find&set kernel, and annotates the SCC as a candidate in order to carry the
information to the subsequent recognition phase. As will be shown in Section 5,
all the information will be available during the execution of the kernel graph
classification algorithm, where the candidate classes will be confirmed or dis-
carded. The example of Figure 7 computes the minimum with index of each
row of a sparse matrix. In each dorow iteration, the minimum is stored in the
scalar tm, whose representation in GSA form includes a candidate scalar gated
SCCS

0 (tm3, tm5). Note that the corresponding scalar assignment statement is
captured in a different SCCS

1 (tm4).
4.2.4 Array Gated SCCs. Three classes are distinguished: minimum/

θ1 : · · · : θd , maximum/θ1 : · · · : θd and find&set/θ1 : · · · : θd , where θi =[[si]] de-
note the classes of the subscripts of a d -dimensional array (with i ∈ {1, . . . , d }).
They verify the same conditions as the corresponding scalar gated SCC classes,
the difference being that an array reference instead of a scalar variable is in-
volved. Furthermore, the information about both the condition and the array
assignment statement is available in the γ and α statements of array gated
SCCs. In Figure 4(c) a kernel find&set/linear involving the one-dimensional
array diag was presented.

4.3 SCC Classification Algorithm

The pseudocode of the algorithm for the recognition of simple kernels is pre-
sented in Figure 8 and will be explained in several steps in the following
pages. The top-level procedure Build kernel graph() constructs the kernel
graph in two stages. First, the SCCs of the GSA graph are identified in
Find SCCs in GSA graph() using the Tarjan algorithm [Tarjan 1972]. This al-
gorithm provides support for the demand-driven classification of SCCs as it
ensures that an SCC is not found until all the SCCs associated with the vari-
ables referenced in the SCC have been found and, therefore, classified. Second,
the SCCs are classified according to the SCC taxonomy of Figure 6 by means of
a demand-driven algorithm implemented through three procedures with indi-
rect recursion: Classify SCC(), Classify() and TFid . During the classification
process, the SCC use-def chains are identified and annotated with the informa-
tion needed by the kernel graph classification algorithm in order to distinguish
the scenarios that characterize compound kernels. The kernel graph is com-
pleted with the classification of SCC use-def chains into conditional, structural
or non-structural according to Definition 4.13. This task is accomplished in the
procedure Classify SCC use def chains().

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:25

Fig. 8. Pseudocode of the SCC classification algorithm for the recognition of simple kernels.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:26 • M. Arenaz et al.

4.3.1 Procedures. Classify SCC(), Classify() and TFid . In
Classify SCC(), the class of an SCC(x1, . . . , xn) is computed as the class
of the assignment operator of the μ-statement inserted after the header of
the outermost loop of a loop nest (the exceptions are trivial SCCs, for which
the unique GSA statement is used). The operator class [[=]] is determined
by calling the recursive procedure Classify(), which launches a post-order
traversal of the AST of the statement. When the leaf nodes that represent
fetch operators of variables defined in other ASTs are reached, TFid is
executed. TFid distinguishes three situations for the classification of a fetch
operator y . Let y.gsa link be a pointer to the AST of the definition statement
of variable y (i.e., the use-def chains of the GSA graph are implemented as
pointers y.gsa link). First, if y.gsa link is located outside the code fragment
analyzed by the compiler (see 1st branch of TFid in Figure 8), then there
is not any SCC that contains y.gsa link and [[y]] is set to class nc/inv to
indicate that y is recognized as an invariant operator. Note that the gsa link
improves the performance of the SCC classification algorithm as searches
for definition statements within programs are avoided. The second situation
copes with target ASTs y.gsa link that belong to the SCC(x1, . . . , xn) under
classification. As shown at the end of the 2nd branch of TFid , y.gsa link
is classified by calling Classify() and the corresponding operator class
is assigned to y . The third situation distinguished in TFid (3rd branch of
TFid in Figure 8) handles target ASTs y.gsa link that belong to a different
SCC(y1, . . . , ym). In this case, the classification of SCC(x1, . . . , xn) is deferred,
the class [[SCC(y1, . . . , ym)]] is computed, the classification of SCC(x1, . . . , xn)
is resumed by setting [[y]]=[[SCC(y1, . . . , ym)]], and an SCC use-def chain
SCC(x1, . . . , xn) → SCC(y1, . . . , ym) (see Definition 4.12) is established in
the kernel graph. Finally, when all the fetch operators have been processed,
[[SCC(x1, . . . , xn)]] is successfully determined. It should be noted that ASTs are
analyzed only once during the execution of the SCC classification algorithm in
order to avoid redundant computations. Thus, in Classify(), the annotation
of the ASTs with the operator class [[=]] is required in order to compute the
class of several fetch operators of the same variable. The algorithm uses a
stack of ASTs that contains the ASTs whose classification is in progress in
order to detect cycles in the GSA graph and thus assure the termination of
the recognition process. Two termination conditions are distinguished. First,
the detection of fetch operators whose target AST y.gsa link belongs to the
SCC(x1, . . . , xn) under classification, which captures the cycles included in
scalar and array SCCs (2nd branch of TFid in Figure 8). In both cases, [[y]] is
set to an SCC class that enables the recognition of the correct simple kernel.
And second, the detection of fetch operators whose y.gsa link is included in a
different SCC(y1, . . . , ym) that is also under classification (3rd branch of TFid
in Figure 8). This situation captures mutually dependent simple kernels that
arise as a result of ignoring conditional use-def chains during SCC search and
that introduce cycles in the kernel graph. In this case, [[y]] is set to the class
nc/unk to indicate that the simple kernels cannot be recognized by the SCC
classification algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:27

Fig. 9. Source codes to illustrate the contextual classification of operators.

During the execution of Classify(), a post-order traversal of an AST is per-
formed. At each node of the AST, the operator class is calculated by a transfer
function that merges the classes derived for the operands. In Arenaz [2003],
the transfer functions of the most common operators are described in detail:
assignment (TF=), fetch (TFid), array reference (TFa(s)), special GSA operators
(TFμ, TFγ and TFα), and arithmetic, logical and relational operators (e.g., TF+,
TF∗, TF
=, TF<, TF>, TFnot , TFand , TFor). For illustrative purposes, only TFid is
presented in the pseudocode of Figure 8. Unlike approaches to automatic ker-
nel recognition that define a library that captures the properties of each kernel,
the XARK compiler encodes such properties in the transfer functions. In order
to distinguish the different situations in which an operator is used during the
execution of a program, the concept of classification context is introduced.

Definition 4.15. Let ⊕ be an operator represented by a node of the AST of a
GSA statement. The classification context of the operator is a tuple < ε, β, l , il >

built as follows:

(1) Suppose that the GSA statement is an α-statement ak = α(aprev, s, e) that
captures a source code array assignment statement a(s) = e. Then, ε =
ak(s), and either β = (if the node is a part of e), or β = (if the node is a
part of s);

(2) Suppose that the GSA statement is a γ -statement xk = γ (c, xtrue, x f alse)
representing an if-endif construct in the source code. Then, ε = xk , and
either β =? (if the node is a part of c) or β = (if the node is a part of xtrue
or x f alse);

(3) Otherwise, ε = x and β = ;

In all cases, l and il are the level and the indirection level of the node, re-
spectively (see Definition 4.9). The notation [[⊕]]εβ,l ,il represents the class of the
operator ⊕ with respect to the classification context < ε, β, l , il >.

In order to illustrate why contextual classification is needed, focus on the
array reference g(i) of Figure 9. In Figure 9(a), the loop-carried dependence
introduced by the scalar variable i is represented by an SCC in the GSA graph.
The classification of the AST of the statement i=g(i) begins with an empty
classification context (represented in Figure 8 as <> in the calls to Classify()
from procedures Classify SCC() and TFid) that is later updated as the post-
order traversal proceeds. Thus, the class [[g(i)]]i,2,0 is determined to be a
non-conditional scalar map (denoted by the class nc/map) because (1) the array
reference g(i) is the right-hand side of the statement (given by β = and l = 2
in the classification context), and (2) the subscript of the array reference and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:28 • M. Arenaz et al.

the ε operator of the classification context are fetch operators of the variable i of
the left-hand side of i=g(i). Note that subscripts are characterized by indirec-
tion levels il ≥ 1 in the classification context (il is incremented in Classify()
only when an array reference operator or the subscript of an α operator are
analyzed, while l is updated in each call to Classify()). Now consider the com-
putation of the scalar reduction using the variable r in the loop of Figure 9(b).
In this case, g(i) is an operand of the sum operator that appears in the state-
ment r=r+g(i), i being a scalar variable that takes a different value in each
loop iteration. Thus, [[g(i)]]r,3,0 represents the computation of a loop-variant
expression (class nc/subs) because (1) the array reference is an operand of the
+ operator in the right-hand side of the statement (given by β = and l > 2),
and (2) the subscript i does not match the fetch operator of the variable r (given
by ε). The example illustrates how the classification context provides transfer
functions with enough information to distinguish the different situations that
may arise.

4.3.2 Procedure Classify SCC use def chains(). The top level procedure
of the SCC classification algorithm, Build kernel graph(), completes the con-
struction of the kernel graph by classifying the use-def chains between SCCs
into the categories defined in Definition 4.13 (namely, structural, non-structural
and conditional). During the execution of the SCC classification algorithm the
SCC use-def chains are annotated in TFid with the information available in
the classification context < ε, β, l , il > (see 3rd branch of TFid in Figure 8).
As a result, the classification of the SCC use-def chains is as follows. First,
conditional SCC use-def chains are recognized when β =?. Second, structural
SCC use-def chains are detected by checking properties (1) and (2) of Defini-
tion 4.13. For property (1), by checking that the def-SCC and use-SCC represent
the same source code variable. For property (2), by checking the following five
conditions: the def-SCC captures a scalar variable, the use-SCC captures an
array variable, the class of the def-SCC matches the class that describes the
access pattern in one dimension of the class of the use-SCC, β = and il ≥ 1.
And third, non-structural SCC use-def chains are recognized if the above con-
ditions are not fulfilled. The usefulness of this information was pointed out
in Section 2.3, where it was used for the identification of the scenarios that
enable the recognition of compound kernels by the kernel graph classification
algorithm.

4.4 Case Study

The consecutively written array kernel computed in the loop of Figure 2 will be
used to illustrate the behavior of the SCC classification algorithm. For clarity,
the classification context will be omitted if it is not relevant for the explanations.
The first step is the identification of the SCCs that appear in the GSA graph.
It contains the following components: SCCS

1 (i1, i2, i3) and SCCA
1 (a1, a2, a3),

that represent the conditional induction (variable i) and the conditional array
assignment (variable a), respectively; SCCS

1 (h1), which captures the loop index
h; and SCCS

1 (t2) and SCCS
0 (t1, t3) that represent the flow of values of the scalar

variable t computed inside the if-endif construct. Focus on the classification of

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:29

Fig. 10. Classification of SCCA
1 (a1, a2, a3) and SCCS

1 (i1, i2, i3) from the example of Figure 2. The
nodes of the ASTs are annotated with the operator classes computed by the demand-driven SCC
classification algorithm. Hatched nodes in the ASTs of SCCA

1 (a1, a2, a3) highlight those operators
whose classification is deferred until the classification of SCCS

1 (i1, i2, i3) is finished.

SCCA
1 (a1, a2, a3) and SCCS

1 (i1, i2, i3). The IR used in this stage is the forest
of ASTs of the statements of the loop body combined with the use-def chains
of the GSA graph and the control flow graph. In Figure 10, ASTs are depicted
as directed graphs with solid arrows. For clarity, the control flow graph is not
drawn and the root nodes of the ASTs are labeled with the unique left-hand
side GSA variable of the statement followed by the assignment operator. The
gsa links are drawn as dotted arrows that establish use-def chains between

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:30 • M. Arenaz et al.

different ASTs. The operator classes are displayed above or to the right of the
nodes of the AST.

Without loss of generality, suppose that the SCC classification algorithm
begins with the analysis of SCCA

1 (a1, a2, a3). The procedure Classify SCC()
derives [[SCCA

1 (a1, a2, a3)]] by calling Classify() with the assignment operator
of the AST of a1=μ(a0,a3). At the beginning of the post-order traversal, the
AST is pushed onto the stack of ASTs and the classification context for the =
operator is initialized to <> (see calls to Classify() from Classify SCC() and
TFid in Figure 8, and the noncontextual operator classes [[=]] in Figure 10). The
first leaf node that is found corresponds to the fetch operator of the variable a0.
Thus, the transfer function TFid uses a0.gsa link to determine the statement
where a0 is defined. As it is located outside the loop body (a0.gsa link is not
displayed in the figure), a0 is recognized as a loop invariant and it is assigned
the class nc/inv (see 1st branch of TFid in Figure 8).

The analysis of the leaf node a3 is rather different because the AST of the
definition statement a3=γ (c(h1),a2,a1) belongs to the SCCA

1 (a1, a2, a3) under
classification. In this case, TFid follows a3.gsa link to locate the AST of the
γ -statement and calls Classify() with the corresponding assignment opera-
tor (see 2nd branch of TFid). The analysis of SCCA

1 (a1, a2, a3) continues in a
similar manner until the classification of the α operator in a2=α(a1,i1,t2+2) is
addressed. First, as the ε operator of the classification context is a fetch of the
array variable a, the class of a1 is set to nc/none to indicate that a1 is defined
in a μ-statement of SCCA

1 (a1, a2, a3) whose classification is still in progress (see
the termination condition for cycles captured in array SCCs in the 2nd branch
of TFid in Figure 8). Second, the operator class [[i1]]a2(i1)

,3,1 of the left-hand side
subscript of the source code statement a(i)=t+2 is carried out. Note that the
classification context is modified to reflect such situation: ε = a2(i1), β = and
il = 1 indicate that i is the subscript of the array reference in the left-hand
side of the statement. The classification of this leaf node i1 deserves special at-
tention because i1.gsa link points to the AST of a statement i1=μ(i0,i3) that
belongs to a different SCCS

1 (i1, i2, i3) whose classification is not in progress
(i.e., i1=μ(i0,i3)
∈ stack of ASTs). In this situation, TFid defers the classi-
fication of SCCA

1 (a1, a2, a3) and starts the computation of [[SCCS
1 (i1, i2, i3)]].

The classification of SCCS
1 (i1, i2, i3) finishes because the variable i is not de-

fined in terms of variables defined in other SCCs (see the shaded region of
Figure 10). As a result, the SCC classification algorithm sets [[SCCS

1 (i1, i2, i3)]]
to the class c/lin of the = operator of i1=μ(i0,i3), which indicates that a con-
ditional linear induction (see Section 3.2) has been recognized successfully. The
initialization and updating of the induction variable is represented using a ba-
sic chain of recurrences [Zima 1986] that consists of the initial value of the
induction variable, and the function to compute the increment in each loop it-
eration. During the execution of the SCC classification algorithm, the initial
value is gathered from the assignment statement i0=1 where the invariant i0
of the μ(i0,i3) operator is defined (see Figure 2). The increment is determined
in TF+ during the analysis of the operator i1+1, which adds the constant 1
to the value of the induction variable in each iteration where the condition is
fulfilled.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:31

Fig. 11. Kernel graph of the example code of Figure 2.

When the classification of SCCS
1 (i1, i2, i3) finishes, none of the opera-

tor classes in the path from the root of a1=μ(a0,a3) to the leaf node i1 of
a2=α(a1,i1,t2+2) have been computed yet (see hatched nodes in the ASTs
of Figure 10). Next, the classification of SCCA

1 (a1, a2, a3) is resumed with the
computation of the contextual class [[i1]]a2(i1)

,3,1 . As shown at the end of the 3rd

branch of TFid in Figure 8, this contextual class is assigned the class c/lin of
SCCS

1 (i1, i2, i3) and the SCC use-def chain is annotated with the classification
context < a2(i1), , 3, 1 >. Once all the children of the α operator have been
classified, the transfer function TFα computes [[α]]a2(i1)

,2,0 as follows. On the one
hand, the class c/subs indicates that the right-hand side t2+2 contains zero ref-
erences to the array a given by the ε operator of the classification context. On
the other hand, the class [[i1]]a2(i1)

,3,1 =c/lin characterizes the access pattern of the
left-hand side subscript of the source code statement a(i)=t+2. Using this infor-
mation, TFα derives the class nc/assig/lin to indicate that the α-statement com-
putes a regular array assignment with linear access pattern (see Section 3.1).
Finally, TF= transfers this class to the root of the AST of a2=α(a1,i1,t2+2).
The execution of the SCC classification algorithm continues until the operator
classes of all the nodes have been determined. As the conditionality refers to
the presence of γ -statements in the SCC (see Definition 4.6), it is TFγ that
changes the SCC class from nc/assig/lin to c/assig/lin. At the end, the SCC
class [[SCCA

1 (a1, a2, a3)]] is set to the class c/assig/lin of a1=μ(a0,a3), which
represents a conditional regular array assignment with linear access pattern.

In order to build the kernel graph, both the SCCs and the SCC use-def chains
have to be classified. The kernel graph of the example code of Figure 2 is pre-
sented in Figure 11(c), where the source code and the GSA form are also in-
cluded in order to improve readability. When TFid classifies the fetch operator
of a variable defined in a different SCC (3rd branch of TFid in Figure 8), a
SCC use-def chain is set in the kernel graph, and it is annotated with the clas-
sification context of the fetch operator. Later, once the analysis of the SCCs
has finished, Build kernel graph() executes Classify SCC use def chains().
Three categories are distinguished (see Definition 4.13): conditional, structural
and non-structural (denoted as � , ⇒ and � , respectively). Consider the
SCC use-def chain SCCA

1 (a1, a2, a3) → SCCS
1 (i1, i2, i3) found during the anal-

ysis of the case study of Figure 10. As described above, the demand-driven
nature of the SCC classification algorithm ensures that when the computation

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:32 • M. Arenaz et al.

of [[SCCA
1 (a1, a2, a3)]] finishes, the class [[SCCS

1 (i1, i2, i3)]] is already known by
the compiler. According to Definition 4.13, SCCA

1 (a1, a2, a3) → SCCS
1 (i1, i2, i3)

is a structural use-def chain (denoted as SCCA
1 (a1, a2, a3) ⇒ SCCS

1 (i1, i2, i3)
in Figure 11(c)) because the access pattern of the class of the array use-SCC
(c/assig/lin) and the class of the scalar def-SCC (c/lin) are both equal to lin, and
because the annotations of the SCC use-def chain are β = and il ≥ 1 (see Sec-
tion 4.3.2). The remaining SCC use-def chains with SCCA

1 (a1, a2, a3) as use-SCC
are classified as follows: SCCA

1 (a1, a2, a3) � SCCS
1 (h1) is conditional because

the fetch operator of the loop index h1 is a part of the condition c(h1) of an
if-endif construct (see β =? in Figure 11(c)); and SCCA

1 (a1, a2, a3) � SCCS
1 (t2)

is non-structural as it fulfills neither the properties of structural SCC use-def
chains nor of conditional ones.

The execution of the SCC classification algorithm results in the con-
struction of the kernel graph of Figure 11(c), which summarizes the de-
pendences between the simple kernels computed in the loop nest: a con-
ditional linear induction (variable i and [[SCCS

1 (i1, i2, i3)]]=c/lin), a condi-
tional regular array assignment with linear access pattern (variable a and
[[SCCA

1 (a1, a2, a3)]]=c/assig/lin), and a conditional scalar assignment (variable
t and [[SCCS

1 (t2)]]=c/subs) that, in each loop iteration, sets t to a different value
that is not known at compile-time. In addition, the kernel graph contains SCCs
(e.g., SCCS

0 (t1, t3)) that arise as a result of building the GSA form of the source
code and that are not relevant from the point of view of kernel recognition. The
organization of this information in more elaborate kernels is described in detail
in the following section.

5. RECOGNITION OF COMPOUND KERNELS

The final goal of the XARK compiler is the recognition of the kernel families
included in Table I, which requires the analysis of the dependences between
the simple kernels identified by the SCC classification algorithm. As shown in
the overview of Figure 2, XARK constructs several high-level IRs on top of the
GSA form. On the one hand, the kernel graph, which captures the information
retrieved by the SCC classification algorithm, namely, the kernel class that
represents the computations of each SCC (i.e., the SCC class) and the classes of
SCC use-def chains. And, on the other hand, the code class, which summarizes
the results of the kernel graph classification algorithm.

The code class consists of a set of kernel classes that represent either the
simple kernels captured by the SCC classes of the taxonomy of Figure 6, or the
compound kernels recognized through the analysis of the dependences between
simple kernels (basically, scalar gated reductions, scalar masks, reinitialized
scalar kernels and complex written arrays of Table I). In addition, the code class
contains the dependences between kernel classes, which are represented as
sets of SCC use-def chains. For illustrative purposes, consider the code class of
Figure 2, which consists of the kernel class c/cwa of the condi-
tional consecutively written array (associated with SCCA

1 (a1, a2, a3) and
SCCS

1 (i1, i2, i3)); the kernel class c/subs of the computation of t (related to
SCCS

0 (t1, t3) and SCCS
1 (t2)); and the use-def chain c/cwa → c/subs given by

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:33

Fig. 12. Pseudocode of the kernel graph classification algorithm.

SCCA
1 (a1, a2, a3) → SCCS

1 (t2). Note that the code class provides a hierarchical
description of the source code by capturing the set of SCCs and the SCC use-def
chains that lead to the recognition of each kernel class. The rest of this section
describes the kernel graph classification algorithm for building the code class
and details the case study of Figure 2. More examples of codes can be found
in Arenaz [2003].

5.1 Kernel Graph Classification Algorithm

The pseudocodes of Figures 12–14 describe the behavior of the kernel graph
classification algorithm. At the top level, Classify kernel graph() starts a
post-order traversal from each SCC with zero incoming SCC use-def chains by
calling the recursive procedure Classify node(). When a node SCC(x1, . . . , xn)
is visited, the successors SCC(y1, . . . , ym) in the kernel graph that are reached
through structural, conditional or non-structural SCC use-def chains are pro-
cessed in that order (see 4th branch of Classify node() in Figure 12). This

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:34 • M. Arenaz et al.

Fig. 13. Pseudocode of transfer functions for structural and conditional SCC use-def chains.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:35

Fig. 14. Pseudocode of the algorithm for the management of the code class.

is because structural and conditional chains have been defined to capture
the scenarios that typically represent the computation of compound ker-
nels (see the description of an example scenario in Section 2.3). When the
classification of a successor SCC(y1, . . . , ym) finishes, the SCC use-def chain
SCC(x1, . . . , xn) → SCC(y1, . . . , ym) is analyzed by means of the correspond-
ing transfer function: TF⇒, TF� and TF� for structural, conditional and
non-structural chains, respectively. Like in the SCC classification algorithm,
the recognition capabilities of the compiler are mainly encoded in the trans-
fer functions. As shown in the pseudocode of Figure 13, the transfer func-
tions analyze the information attached to the SCC use-def chain of the ker-
nel graph, compute the actions to be carried out in order to determine the
code class [[code]], and call Execute actions() to actually modify [[code]]. The
procedure Execute actions() of Figure 14 distinguishes three types of actions
(insert a kernel class, insert a chain between kernel classes, and attach an
SCC to a kernel class), which will be described later in Section 5.1.1. Note
that the nodes of the kernel graph are visited only once in order to avoid re-
dundant computations (see 2nd branch of Classify node()). Furthermore, the
termination of the kernel graph classification algorithm is assured by means
of a stack of SCCs that enables the detection of mutually dependent simple
kernels, which may arise because the SCC classification algorithm ignores

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:36 • M. Arenaz et al.

conditional use-def chains during SCC search (see Definition 4.2 and 1st branch
of Classify node() in Figure 12).

The recognition of the scenarios that characterize compound kernels is
carried out in TF⇒ and TF�. Figure 13 presents fragments of both trans-
fer functions that include some scenarios that are frequently found in real
codes. The transfer function TF� is not shown because it just inserts in
the code class two simple kernels [[SCC(x1, . . . , xn)]] and [[SCC(y1, . . . , ym)]],
as well as the corresponding dependence SCC(x1, . . . , xn) → SCC(y1, . . . , ym).
Given an SCC use-def chain SCC(x1, . . . , xn) → SCC(y1, . . . , ym), the infor-
mation available in the kernel graph that defines a scenario is: first, the
properties of SCC(x1, . . . , xn) and SCC(y1, . . . , ym) (see Definitions 4.3–4.8;
for example, cardinality, scalar/array); second, the kernel classes [[use krnl]]
and [[def krnl]] computed at the beginning of each transfer function for
SCC(x1, . . . , xn) and SCC(y1, . . . , ym), respectively; third, the class of the
SCC use-def chain (see Definition 4.13, namely, conditional, structural or
non-structural); and fourth, the classification context annotated in the SCC
use-def chain. The computation of [[use krnl]] (or [[def krnl]]) is as follows. In
find kernel class in code class(), [[code]] is searched for a kernel class that
represents the computations captured by SCC(x1, . . . , xn) (or SCC(y1, . . . , ym)).
In case of success, [[use krnl]] is set to such kernel class to reflect that, during the
analysis of the kernel graph, a compound kernel that includes the computation
of SCC(x1, . . . , xn) has already been recognized. In case of failure, [[use krnl]]
is set to [[SCC(x1, . . . , xn)]] to attempt the detection of a new compound kernel.
The behavior of TF⇒ and TF� is as follows. When a scenario is found, an ap-
propriate compile-time test that proves the existence of a compound kernel is
performed. If the test succeeds, an action to insert the class of the compound
kernel in [[code]] is carried out. Otherwise, two default actions are executed:
insert the class of the simple kernel represented by SCC(x1, . . . , xn), and in-
sert the chain SCC(x1, . . . , xn) → SCC(y1, . . . , ym). The post-order traversal of
the kernel graph preserves the correctness of the code class by assuring that a
kernel class associated with SCC(y1, . . . , ym) has been inserted before.

For illustrative purposes, consider the code of Figure 7 for the compu-
tation of the minimum with index of each row of a sparse matrix. As de-
scribed in Section 4.2.3, the SCC classification algorithm checks the condition
a(f(h))<tm and recognizes a minimum kernel that is annotated as a candi-
date because the condition a(f(h))<tm and the definition source code state-
ment tm=a(f(h)) are available in different scalar SCCs (SCCS

0 (tm3, tm5) and
SCCS

1 (tm4), respectively). This situation would be reflected in the kernel graph
as a structural SCC use-def chain SCCS

0 (tm3, tm5) ⇒ SCCS
1 (tm4) where the

def-SCC is trivial and the class of the use-SCC is a candidate minimum. As
these properties match the 2nd scenario of TF⇒ in Figure 13, the procedure
Test scalar gated kernel() is executed in order to assure that the condition
matches a < operator where the operands on the left and on the right are,
respectively, the right-hand side a(f(h)) and the left-hand side tm of the def-
inition scalar statement. As a result, a minimum kernel class associated with
SCCS

0 (tm3, tm5) and SCCS
1 (tm4) would be inserted in the code class. Later in

the analysis of the kernel graph, a post-order traversal started from the node

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:37

SCCS
0 (tl3, tl5) with zero incoming SCC use-def chains would find a condi-

tional use-def chain SCCS
0 (tl3, tl5) � SCCS

0 (tm3, tm5). In order to recognize the
minimum with index kernel (see 1st scenario of TF� in Figure 13), the com-
piler must be aware that a minimum kernel has already been recognized. Thus,
searching the code class for a kernel class associated to SCCS

0 (tm3, tm5) would
result in setting [[def krnl]]=minimum and preventing the use of the incorrect
class [[def krnl]]=candidate minimum, which would lead the compiler to fail in
the recognition of the scenario of the minimum with index reduction.

5.1.1 Management of the Code Class. The procedure Execute actions()
presented in Figure 14 distinguishes three actions: insert kernel to insert a ker-
nel class, insert chain to insert a chain between kernel classes, and attach SCC
to associate an SCC with an existing kernel class.

The first action is as follows. Two parameters are considered: the new kernel
class and the corresponding set of SCCs of the kernel graph (new kernel class
and set of SCCs in Figure 14, respectively). The new kernel class is ignored in
two cases. First, when [[code]] contains another kernel class whose set of SCCs
is a superset of set of SCCs, which indicates that the new kernel is simpler
than another one that has already been recognized. And second, when there
is a kernel class in [[code]] attached to the same set of SCCs, meaning that
new kernel class has already been recognized through the analysis of another
structural or conditional SCC use-def chain. Except in these two cases, the
new kernel class, and its corresponding set of SCCs, is inserted in [[code]] after
removing the kernel classes whose set of SCCs is a subset of set of SCCs, as
they capture kernels that are simpler than the new one.

The second action is insert chain. The dependences between kernel classes
are represented as sets of SCC use-def chains that summarize all the
use-def chains between SCCs of the kernel classes as one dependence in
the code class. Let SCC(x1, . . . , xn) → SCC(y1, . . . , ym) be an SCC use-def
chain that links the kernel classes associated with SCC(x1, . . . , xn) and
SCC(y1, . . . , ym), respectively. A new dependence is inserted in [[code]]
if two conditions are fulfilled: first, SCC(x1, . . . , xn) and SCC(y1, . . . , ym)
are included in the sets of SCCs of two different kernel classes; and sec-
ond, [[code]] does not contain any dependence between such kernel classes.
Note that SCC(x1, . . . , xn) → SCC(y1, . . . , ym) is added to the set of SCC
use-def chains of the new dependence or of the corresponding existing de-
pendence. Furthermore, SCC use-def chains that characterize scenarios of
compound kernels are implicitly represented in the kernel classes of compound
kernels.

The actions described above are the core of the algorithm for the manipula-
tion of the code class. The third action, attach SCC, is devoted to handle the
virtual SCCs (see Definition 4.8) that appear in the GSA graph. Consider the
example of Figure 7. As the minimum tm is computed in the inner loop doh, a vir-
tual SCCS

0 (tm1) represents the flow of values of tm in the outermost loop dorow.
Thus, during the post-order traversal started from SCCS

0 (tm1), the structural
SCC use-def chain SCCS

0 (tm1) ⇒ SCCS
1 (tm3, tm5) leads the compiler to attach

SCCS
0 (tm1) to an existing kernel, the scalar minimum reduction represented by

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:38 • M. Arenaz et al.

Fig. 15. Computation of the code class of the kernel graph of Figure 11(c). Step-by-step execution
of the kernel graph classification algorithm.

SCCS
0 (tm1) and SCCS

1 (tm3, tm5) that was previously recognized through the 5th
scenario of TF⇒ (see Figure 13).

The next section presents a case study that describes the kernel graph clas-
sification algorithm in detail. The computation of the code class of the example
of Figure 2 is analyzed step by step, focusing on the recognition of the scenarios
and on the execution of the transfer functions.

5.2 Case Study

The kernel graph of Figure 11(c) exhibits the simple kernels found in the source
code of our running example, as well as the dependence relationships between
those simple kernels. Figure 15 summarizes the step-by-step execution of the
post-order traversal of the two SCCs with zero incoming SCC use-def chains:
SCCA

1 (a1, a2, a3) from steps 1 to 17, and SCCS
0 (t1, t3) from steps 18 to 24. For

each step, the procedure call under execution, the actions carried out on the
code class, and the contents of the code class are presented. Procedure calls are
indented to exhibit the call trace of the algorithm. Due to space limitations,
the actions are encoded in three pieces of information (separated by colons)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:39

as follows. On the one hand, the symbol I represents both insert kernel and
insert chain actions. In the first case, the new kernel class and the set of SCCs
are indicated. In the second case, the SCC use-def chain that links two kernel
classes is specified. On the other hand, the symbol A denotes attach SCC, for
which the new SCC and the existing kernel class are detailed. The success
or the failure in the execution of an action is also indicated.

Without loss of generality, suppose that Classify kernel graph() initializes
the code class, and starts a post-order traversal from SCCA

1 (a1, a2, a3) by calling
Classify node(SCCA

1 (a1, a2, a3)). In order to recognize compound kernels as
soon as possible, the structural chain SCCA

1 (a1, a2, a3) ⇒ SCCS
1 (i1, i2, i3) is

followed and Classify node(SCCS
1 (i1, i2, i3)) is executed. The post-order

traversal continues and the node SCCS
1 (h1) is reached through the con-

ditional SCC use-def chain SCCS
1 (i1, i2, i3) � SCCS

1 (h1). As SCCS
1 (h1)

has zero outgoing SCC use-def chains, Classify node(SCCS
1 (h1)) in-

serts the kernel class nc/lin that captures the loop index h by calling
Execute actions(insert kernel(nc/lin,{SCCS

1 (h1)})) (see 3rd branch of
Classify node() in Figure 12, and step 4 in Figure 15). The last step carried
out by the procedure call Classify node(SCCS

1 (i1, i2, i3)) is the analysis of
SCCS

1 (i1, i2, i3) � SCCS
1 (h1). TF� will execute the default actions because

there is not any scenario that matches the properties of this conditional SCC
use-def chain. Thus, the class of the use SCCS

1 (i1, i2, i3) is inserted in [[code]]
(see step 6 in Figure 15). In addition, a dependence between the conditional
induction variable i represented by SCCS

1 (i1, i2, i3) and the loop index h
captured by SCCS

1 (h1) is inserted in [[code]], and SCCS
1 (i1, i2, i3) � SCCS

1 (h1)
is added to the corresponding set of SCC use-def chains. The resulting code
class is [[c/lin → nc/lin]].

Next, the analysis of the structural chain SCCA
1 (a1, a2, a3) ⇒ SCCS

1 (i1, i2, i3)
is addressed. This SCC use-def chain has the properties of the 3rd scenario
of TF⇒ in Figure 13: the class of the scalar def-SCC is c/lin, the class of the
array use-SCC is c/assig/lin, and the annotations β = and il ≥ 1 indicate
that the induction variable i is referenced in the subscript of the left-hand side
of the statement a(i)=t+2 represented by SCCA

1 (a1, a2, a3). In order to confirm
the existence of this compound kernel, Test consecutively written array()
runs the following compile-time test proposed in Lin and Padua [1998]:
first, it checks that all the operations on the induction variable i are in-
crements (or decrements) of one unit; and second, it checks that every time
an array entry a(i) is written, the induction variable i is updated. Within
the XARK compiler, the first constraint is easily checked using the step
size of the induction (step size 1 in the example), which is represented in
the basic chain of recurrences computed during the execution of the SCC
classification algorithm (see Section 4.4). The second constraint is also fulfilled
as the statements i2=i1+1 and a2=α(a1,i1,t2+2) belong to the same basic
block of the control flow graph of the loop. Consequently, the procedure
Test consecutively written array() succeeds and the compiler executes the
action insert kernel(c/cwa,{SCCA

1 (a1, a2, a3),SCCS
1 (i1, i2, i3)}) (see step 8

in Figure 15). Thus, the procedure Execute actions() proceeds as follows. As
the code class [[c/lin → nc/lin]] contains the conditional induction i that is a

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:40 • M. Arenaz et al.

part of the conditional consecutively written array, c/lin is removed and c/cwa
is inserted in [[code]]. Such situation is detected by checking that the SCCs
attached to the new class, SCCA

1 (a1, a2, a3) and SCCS
1 (i1, i2, i3), are a superset

of the SCCS
1 (i1, i2, i3) associated with the conditional induction. In addition,

the use-def chain c/lin → nc/lin introduced by SCCS
1 (i1, i2, i3) � SCCS

1 (h1)
now defines a dependence relationship c/cwa → nc/lin. As a result, the
code class is [[c/cwa → nc/lin]]. Note that other detection techniques such as
monotonic evolution [Wu et al. 2001] can also be used to recognize consecutively
written arrays. Consequently, the scenarios are a mechanism that enables the
use of XARK as a unified framework where compiler techniques with different
goals can be integrated and executed selectively based on the characteristics
of the source code.

The post-order traversal started from SCCA
1 (a1, a2, a3) continues, and

the conditional SCC use-def chain SCCA
1 (a1, a2, a3) � SCCS

1 (h1) is ana-
lyzed. On the one hand, Classify node(SCCS

1 (h1)) does not change the
contents of [[code]] because the node SCCS

1 (h1) has already been vis-
ited (see 2nd branch in Figure 12). On the other hand, the properties
of the SCC use-def chain do not match any scenario of TF� and thus
the default actions insert kernel(c/assig/lin,{SCCA

1 (a1, a2, a3)}) and
insert chain(SCCA

1 (a1, a2, a3) � SCCS
1 (h1)) are executed. The first action

ignores the new class c/assig/lin because it represents a kernel that is a
part of the consecutively written array c/cwa already included in [[code]]. The
compiler detects this situation by checking that the SCCs attached to c/cwa,
SCCA

1 (a1, a2, a3) and SCCS
1 (i1, i2, i3), are a superset of the SCCA

1 (a1, a2, a3)
associated with the new kernel class. Finally, the SCC use-def chain of the
second action is added to the set of SCC use-def chains between the kernel
classes of the consecutively written array and the loop index (see step 11 of
Figure 15).

The classification of the remaining chain SCCA
1 (a1, a2, a3) � SCCS

1 (t2)
is summarized in steps 12–17 of Figure 15. Thus, the analysis of
SCCS

1 (t2) � SCCS
1 (h1) leads to the recognition of a new kernel class by

running the default actions of TF�: insert the kernel class c/subs of the use
SCCS

1 (t2) and its dependence with the loop index h. The resulting code class
is [[c/cwa → nc/lin, c/subs → nc/lin]] (see step 15 of Figure 15). The last step
of the post-order traversal started from SCCA

1 (a1, a2, a3) is the execution of
TF� for SCCA

1 (a1, a2, a3) � SCCS
1 (t2). As shown in step 17 of Figure 15, the

compiler does not find any known scenario and executes the default actions
of TF�. First, the compiler attempts to insert the classes of the use-SCC
and the def-SCC in the code class. However, in this case the action fails
because the regular array assignment represented by SCCA

1 (a1, a2, a3) is a part
of the consecutively written array included in the the code class. And second, a
dependence relationship between the kernel classes c/cwa and c/subs defined
by SCCA

1 (a1, a2, a3) → SCCS
1 (t2) is inserted in [[code]]. The resulting code class

is [[c/cwa → nc/lin,c/subs → nc/lin,c/cwa → c/subs]].
In order to complete the analysis of the whole kernel graph, the kernel graph

classification algorithm starts a post-order traversal from SCCS
0 (t1, t3). Two

SCC use-def chains are found. On the one hand, SCCS
0 (t1, t3) ⇒ SCCS

1 (t2)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:41

Table II. Summary of Characteristics of the Benchmark Suite

S
P

E
C

P
er

fe
ct

S
pa

rs
K

it
-I

I

P
LT

M
G

T
ot

al
s

#Routines 273 608 103 258 1242
#Code lines 53173 60136 8286 27530 149125
#Loops analyzed 769 1245 293 651 2958
#Loops recognized 609 955 224 502 2290
%Loops recognized 79% 82% 76% 77% 77%

points to a node that has already been visited. Thus, TF⇒ is applied and
the virtual SCCS

0 (t1, t3) is attached to the kernel class c/subs of [[code]] (see
5th scenario of TF⇒ in Figure 13 and step 21 in Figure 15). The last step
of the algorithm addresses the analysis of the conditional SCC use-def chain
SCCS

0 (t1, t3) � SCCS
1 (h1), which executes the default actions and adds the

SCC use-def chain to the corresponding dependence in [[code]] (see step 24 in
Figure 15).

The code class [[c/cwa → nc/lin, c/subs → nc/lin, c/cwa → c/subs]] com-
puted by the kernel graph classification algorithm concisely represents
that the temporary variable t (captured by SCCS

1 (t2) and SCCS
0 (t1, t3)) is

used in the consecutively written array a (captured by SCCA
1 (a1, a2, a3) and

SCCS
1 (i1, i2, i3)) during the execution of the loop doh of Figure 2. Note that the

structural SCC use-def chains of the kernel graph are intrinsically represented
in the kernel classes c/cwa and c/subs, while the non-structural and the
conditional SCC use-def chain exhibit the dependence relationships between
a, t and h. Overall, the code class provides a hierarchical description of the
loop body as a set of kernels and a set of dependences between these kernels
that abstracts the implementation details of the source code. Thus, other
compiler techniques can benefit from the information captured in the code
class. As an example of the potential of this representation, Arenaz et al. [2004]
describe how the code class meets the information requirements of several
source-to-source code transformations in the scope of a parallelizing compiler.

6. EXPERIMENTAL RESULTS

The XARK compiler framework has been developed on top of the Polaris inter-
mediate representation [Blume et al. 1996] and includes all the stages shown in
Figure 2 (Polaris provides a translator of Fortran77 code into GSA form). Four
benchmark suites have been used in the experiments: the Fortran routines in-
cluded in SPEC CPU2000 [SPEC], the Perfect benchmarks [Berry et al. 1989],
the SparsKit-II library [Saad 1994] and the PLTMG (Piecewise Linear Triangle
Multi-Grid) code [Bank 2007]. SPEC and Perfect are well-known benchmarks
that have been extensively used in the literature. SparsKit-II and PLTMG have
been selected because their source codes contain plenty of irregular computa-
tions that cover the typical kernels found in full-scale applications. Table II
shows the size of the benchmarks in terms of number of routines and number
of code lines, and presents the percentage of loops recognized successfully by
the XARK compiler.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:42 • M. Arenaz et al.

Fig. 16. Failure reasons of the XARK compiler.

The automatic recognition of kernels is the basis for a variety of techniques
used in restructuring, parallelizing and optimizing compilers. Thus, Section 6.1
shows statistics about the different kernel families found in SPEC, Perfect,
SparsKit-II and PLTMG. Typical applications of this information are induction
variable substitution and the replacement of the code represented by a kernel
with a platform-optimized version of that code, for instance, the parallel com-
putation of an irregular reduction or a consecutively written array. Section 6.2
presents a characterization of array accesses at several levels of indirection
as this information is needed by different compiler techniques. Thus, many
data-dependence tests fail in the presence of nonlinear and subscripted sub-
scripts at indirection level one. Another example is cache behavior analysis,
which requires the characterization of the subscripts of all the references to an
array variable.

6.1 Recognition Results

The effectiveness of XARK has been measured in terms of the percentage of
recognized loops, that is, loops whose body is represented by a kernel graph
that does not contain any unknown kernel classes. The last row of Table II
shows that the percentage of success is 77% on average, ranging from 76% in
SparsKit-II up to 79% in SPEC.

A breakdown of the reasons why the recognition process fails is presented in
Figure 16. From a total of 668 unrecognized loops, 93% contain simple kernels
that are not recognized by the SCC classification algorithm because of (1) the
existence of SCCs of cardinality greater than one (SCC clas. alg.: |SCC| > 1 in
Figure 16), (2) the presence of SCCs with statements that belong to different
kernel classes (SCC clas. alg.: Stmts), and (3) several failure reasons that are not

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:43

very frequent in the benchmarks (SCC clas. alg.: Others). The remaining 7% are
loops where the kernel graph classification algorithm either detects unknown
scenarios or it runs compile-time tests that do not lead to the recognition of
known compound kernels (Kernel graph clas. alg. in Figure 16).

The SCC classification algorithm focuses on the analysis of SCCs with car-
dinality zero and one. Thus, the primary failure reason is SCC clas. alg.:
|SCC| > 1, which prevents the characterization of the computations carried
out in 51% of the 668 unrecognized loops. Note that this limitation of the recog-
nition algorithm affects 81% of the unrecognized loops in SparsKit-II. A prelim-
inary manual analysis revealed that SCCs with cardinality greater than one
represent, for instance, swap operations between scalars and between array
elements, mutual induction or mutual array recurrences [Redon and Feautrier
1993; Zhang and D’Hollander 1994; Pinter and Pinter 1994]. From the loops
that only contain SCCs of cardinality zero and one, SCC clas. alg.: Stmts indi-
cates that 23% of loops are not recognized successfully because at least one SCC
is composed of statements (i.e., assignment operator = in procedure Classify()
of Figure 8) that are assigned different classes by the SCC classification algo-
rithm. For instance, such SCCs capture a combination of array assignments
and array reductions with regular and irregular access patterns, as well as
a complex control flow. Finally, the remaining 19% corresponds to loops that
contain, for instance, infrequently used Fortran operators or variations in the
implementation of known kernels whose recognition would require the tuning
of the transfer functions of the SCC and kernel graph classification algorithms.

The analysis of the code classes that characterize the loops of the benchmark
suites revealed that, although real codes contain a great variety of different
code classes, all of them are built on top of a small set of kernels. Table III
summarizes the number of kernels found in SPEC, Perfect, SparsKit-II and
PLTMG, the last column showing the results for the four benchmark suites.
The eight kernel families distinguished in Table I are considered: assignments
(covering 66% of the kernels), inductions (9%), maps (0, 5%), reductions (10%),
masks (0, 5%), array recurrences (3%), reinitialized kernels (1%), and complex
written arrays (10%). The vast majority of kernels (65%) are scalar assignments
and regular array assignments. Inductions and reductions, which have been
the focus of an intensive research activity during the last decade, cover up to
19% of the recognized kernels. More specifically, the benchmarks contain 730
linear inductions, 76 polynomial inductions, 162 geometric inductions, 1047
non-gated reductions and 18 gated reductions (16 scalar minimum/maximum
reductions - 5 of them with index -, and 2 regular array reductions). Note that
these numbers do not include the inductions and reductions that appear as a
part of the 11% of reinitialized kernels (102 linear inductions, 9 scalar maps, 51
non-gated reductions and 1 scalar minimum/maximum reduction) and complex
written arrays. Finally, the remaining 5% of recognized kernels corresponds
to irregular array assignments, maps, masks and array recurrences. Despite
this low percentage, the recognition of these kernels is necessary in order to
fully characterize real applications. It should be noted that the experiments
have led to find new kernels that have not been studied in the literature, in
particular, array maps, irregular array recurrences, consecutively reduced (and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:44 • M. Arenaz et al.

Table III. Collection of Kernel Families Recognized by XARK

Kernel Family SPEC Perfect SparsKit-II PLTMG Total

Assignments 3213 2568 396 1026 7203
scalar assignment 2008 1772 196 503 4479
regular array assignment 1201 789 129 456 2575
irregular array assignment 4 7 71 67 149

Inductions 170 617 38 143 968
linear induction 100 494 36 100 730
polynomial induction 5 66 0 5 76
geometric induction 65 57 2 38 162

Maps 0 0 0 46 46
scalar map 0 0 0 44 44
regular array map 0 0 0 2 2

Reductions 350 427 67 221 1065
scalar reduction 34 146 21 105 306
regular array reduction 309 259 10 86 664
irregular array reduction 4 19 30 24 77
scalar minimum/maximum reduction 1 3 6 6 16
regular array minimum/maximum reduction 2 0 0 0 2

Masks 6 2 8 24 40
scalar find&set 2 1 2 13 18
regular array find&set 4 1 4 6 15
irregular array find&set 0 0 2 5 7

Array recurrences 142 149 29 66 386
regular array recurrence 142 139 25 51 357
irregular array recurrence 0 10 4 15 29

Reinitialized kernels 15 123 12 13 163
induction 7 91 4 0 102
map 0 0 0 9 9
reduction 8 32 8 4 52

Complex written arrays 46 628 240 133 1047
consecutively written array 22 322 229 109 682
consecutively reduced array 24 241 0 0 265
consecutively recurrenced array 0 8 3 24 35
segmented consecutively written array 0 57 8 0 65
segmented consecutively reduced array 0 3 0 0 3

recurrenced) arrays and segmented consecutively reduced (and recurrenced)
arrays (see collection of kernels in Section 3).

Experiments about the classes of kernels that appear in loops with regular
and irregular computations have also been conducted. Hereafter, an irregu-
lar loop is a loop whose body fulfills at least one of the following constraints:
first, the assignment statements contain array references at indirection levels
greater than one; and second, the condition of the if-endif constructs contain
array references at indirection level greater than zero. Note that these con-
straints introduce data dependences and control dependences that cannot be
determined at compile-time, respectively. A loop that does not fulfill any of
these constraints is a regular loop. From 2958 analyzed loops, 438 (15%) con-
tain irregular computations. More specifically, in 262 loops (9%), irregularity
is due to the presence of array assignments, array reductions, array masks
and array recurrences with irregular access patterns. The irregularity of the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:45

Fig. 17. Distribution of kernel families (excluding scalar assignments and regular array assign-
ments) in regular and irregular loops.

remaining 176 loops (6%) is due to the existence of either array references in
the conditions of if-endif constructs, or read-only subscripted array references
used in the computations of other kernels. Figure 17 exhibits the differences
between the classes of kernels that appear in regular and irregular loops. For
clarity, scalar assignments and regular array assignments have not been in-
cluded because they cover 65% of the kernels on average. Inductions are by far
the most frequent kernels in both regular and irregular loops. Note that they
appear as simple kernels as well as a part of reinitialized kernels and complex
written arrays. Furthermore, the figure shows which is the set of kernels with
irregular access patterns that appear only in irregular loops, namely, irregu-
lar array assignments, scalar maps, irregular array reductions, irregular array
find&sets and irregular array recurrences. This is because, in regular loops, the
subscripts of the array references do not depend on other array references and
can be rewritten in terms of the index variables of the enclosing loops.

6.2 Array Access Analysis

The goal of these experiments is to find out which are the types of subscript
expressions that are most often used in real applications. For each indirec-
tion level, the subscripts in each array dimension were classified into six cat-
egories that capture the structure of the subscripting functions. Finally, the
number of times each category of access pattern occurs in the benchmarks was
counted. Figure 18 shows the frequency of each category with respect to the to-
tal number of subscripts. The six categories are related to the classes of scalar
non-gated SCCs of the taxonomy of Figure 6 as follows: invariant ((n)c/inv),
linear (nc/lin), polynomial or geometric (nc/poly, nc/geom), monotonic (c/lin,
c/poly, c/geom), subscripted ((n)c/reduc, (n)c/map, (n)c/subs) and unknown
((n)c/unk). Subtotals for indirection levels one (il = 1) and greater than one
(il > 1), and totals for all indirection levels (last column Totals) are presented.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:46 • M. Arenaz et al.

Fig. 18. Distribution of access patterns at indirection level (il) one and greater than one. Totals
for all indirection levels are also presented.

The results for indirection level one reveal the different nature of the com-
putations involved in the benchmarks. On the one hand, SPEC and Perfect
contain less than 5% of subscripted subscripts distributed among a small num-
ber of irregular loops (only 13 of 769 and 56 of 1245, respectively; see Table II).
In contrast, SparsKit-II and PLTMG contain more than 18% of subscripted
subscripts distributed among a significant number of loops (the number of ir-
regular loops is 145 of 293 and 224 of 627, respectively). In addition, SparsKit-II
contains 6% of monotonic access patterns, which introduces an additional com-
plexity from the point of view of automatic program analysis. On the other
hand, SPEC and Perfect benchmarks contain more than 95% (756 of 769 and
1189 of 1245, respectively) of loops with regular computations. The results of
Figure 18 show that, on average, 89% of array accesses are invariant (20%) or
linear (69%). Although the access patterns found in SparsKit-II and PLTMG
are invariant and linear as well, the amount of regular loops is 48% only.

Regarding the access patterns at indirection levels greater than one, the
experiments show that 82% are regular. More specifically, all of them fit into
three categories only: invariant (27%), linear (55%) and subscripted (8%). Note
that 100% of access patterns are either invariant or linear in SPEC and Perfect,
while SparsKit-II and PLTMG contain 69% and 12% of subscripted subscripts,
respectively. The existence of array references with multiple levels of indirection
remarks the irregular nature of the computations carried out in SparsKit-II and
PLTMG.

7. DISCUSSION

7.1 Robustness

The detection of SCCs in SSA-like representations was shown to be an effective
approach for the recognition of kernels in codes with complex control and data

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:47

flows. Such approach captures the flow of values of a program and thus provides
robustness against different codifications of a given kernel. XARK introduces
a higher degree of robustness through the definition of the cardinality of an
SCC. For illustrative purposes, consider the two intermediate representations
of an array recurrence shown in Figure 19. The Polaris compiler translates
each source code statement into one AST with tree nodes that represent n-
ary operations. In contrast, GCC breaks each source code statement into a
set of ASTs where operations are split into 3-address form, using temporary
variables to hold intermediate values. In both cases, the array recurrence is
represented by one SCC of cardinality one associated to the source code variable
a. In Polaris, the SCC classification algorithm traverses one AST and classifies
the right-hand side a(wa)+1 in the classification context < a(i), , 2, 0 > given
by the left-hand side a(i), the position , the level 2 and the indirection level
0. However, for the SCC classification algorithm to have success in GIMPLE,
the classification context has to be propagated from the use of the temporary
T in a(i)=T+1 to the right-hand side of its definition statement T=a(wa). This
issue is handled in the SCC classification algorithm whenever the analysis of an
AST that has not been visited is launched (see Figure 8, procedure Classify(),
case = in the switch statement).

Overall, the kernel recognition is robust against source code transformations
that introduce temporaries and other structural changes that do not change
the SCC graph conditional dependences and individual SCC cardinalities. As
a result, the XARK compiler framework can be used at different phases of the
compilation process.

7.2 Time Complexity

The XARK compiler addresses kernel recognition in two phases. In the first
phase, the SCC classification algorithm traverses the forest of ASTs in a
demand-driven manner so that the operator represented by each tree node
is classified only once and its kernel class is reused subsequently. Thus, the
construction of the kernel graph takes O(N + E) time, where N is the number
of tree nodes in the forest of ASTs and E is the number of use-def chains in
the GSA graph. In the second phase, the kernel graph classification algorithm
traverses the kernel graph in a demand-driven manner analyzing all SCCs and
all SCC use-def chains only once. As a result, the construction of the code class
takes O(Nscc + Escc) time, where Nscc and Escc are the number of SCCs and
SCC use-def chains, respectively. For illustrative purposes, approximations of
size of the intermediate representations built by XARK are as follows. Regard-
ing the forest of ASTs combined with GSA graph, N + E is 137223, 412065,
1645682 and 1762616 in SparsKit-II, PLTMG, SPEC and Perfect, respectively.
Regarding the kernel graph, Nscc + Escc is 35163, 106845, 530316 and 587993
in SparsKit-II, PLTMG, SPEC and Perfect, respectively. Approximations of the
running time (in seconds) of the XARK compiler for the benchmarks SparsKit-
II, PLTMG, SPEC and Perfect are 11s, 103s, 170s and 266s, respectively. Note
that the increase of the running time is proportional to the total number of
nodes and edges of the intermediate representations built by XARK.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:48 • M. Arenaz et al.

Fig. 19. Example of loop that contains a linear induction (variable i), an array recurrence (variable
a), and a scalar wrap-around kernel (variable wa).

7.3 Extensibility

The classification algorithms of XARK hinge on a demand-driven post-order
traversal of the forest of ASTs and the kernel graph, as well as on the application
of a transfer function at each tree node. A transfer function derives a kernel
class for an operation taking into account not only the kernel classes of the
operands, but also the classification context of the corresponding operator. This
design makes kernel recognition easier to implement and maintain, as well as
more powerful.

For illustrative purposes, consider the recognition of wrap-around variables.
In this kernel, a scalar variable is assigned a value from outside a loop in the
first iteration, and then takes the value of an induction variable for the remain-
der of the iterations. The detection of wrap-around variables is important for
optimizing compilers because the first loop iteration may be peeled off, and the
wrap-around variable may be treated as an induction variable. In Figure 19,
there is a use of a wrap-around variable wa at the array assignment statement
a(i)=a(wa)+1. Within a(wa), the reference to wa has the value n in the first iter-
ation and the value of the linear induction variable i on subsequent iterations.
Typically, recognition is carried out in a separate pattern-matching phase run
after induction variable detection that checks that the wrap-around variable is
used in the loop before being assigned. Within the XARK compiler, the scalar
assignment wa=i is represented by a scalar trivial SCC. The demand-driven
nature of the SCC classification algorithm assures that the linear induction
variable i is recognized before classifying its use at the right-hand side of wa=i.
Thus, the use of i is classified as nc/lin. In order to recognize wa properly, the fol-
lowing extensions must be performed. First, the transfer function TFid checks
that the use of i occurs at level 2 at the right-hand side of the statement wa=i. If
the test is successful, the trivial SCC is annotated as a candidate wrap-around.
Second, TFid must assure that the assignment statement of the wrap-around
variable post-dominates all the statements where it is used, which assures that
the wrap-around variable is set to a new value before proceeding to the next
loop iteration. This is accomplished as follows. When a use of wa is found during
the execution of the SCC classification algorithm and a dependence relation-
ship between the SCCs is established, TFid must check the post-dominance
relationship between the use and the definition statements. If the test suc-
ceeds in all cases, the annotation of the class of the trivial SCC as candidate is
cleared.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:49

Overall, the extension of the XARK compiler is accomplished by adding new
transfer functions for any new operator represented as a tree node in the com-
piler intermediate representation, and by adding new rules to the transfer
functions that will enable the recognition of user-defined kernels. Finally, note
that appropriate compile-time tests must be implemented when needed.

8. RELATED WORK

Following the five-level classification of kernel recognition techniques presented
in Figure 1, the algorithms of the XARK compiler framework are compared
with other approaches that work at the domain-independent concept level (Sec-
tion 8.1) and at the domain-specific concept level (Section 8.2). In addition,
XARK is compared with some frameworks proposed in the literature that carry
out advanced symbolic analysis (Section 8.3).

8.1 Kernel Recognition at the Domain-Independent Concept Level

There is an extensive literature about kernel recognition. A pattern-matching
technique oriented to find parallel loops in the scope of a parallelizing com-
piler is proposed in Pottenger and Eigenmann [1995]. The method matches
the statements of a loop body to a set of predefined patterns that character-
ize linear inductions as well as scalar and array non-gated reductions. For the
recognition of array reductions, a data-dependence test analyzes the matched
reduction variables in order to prove that all loop iterations reference different
elements of the reduction array. The main limitation is that neither other types
of kernels nor complex control flows can be handled. In addition, variations in
the programming style have a great impact on the effectiveness of the approach
because source code statements are matched directly.

Jouvelot and Dehbonei [1989] and Ammarguellat and Harrison [1990] use
abstract interpretation to derive symbolic expressions that summarize the ef-
fect of a loop on each variable assigned in the loop body. A set of grammar rules
determines the symbolic value associated with each operator of the source code
(i.e., expressions and statements). Next, such symbolic expressions are pattern-
matched to a data-base of known kernels. These methods are able to recognize
some forms of inductions as well as scalar and array reductions. In addition,
Ammarguellat and Harrison [1990] detect array recurrences, including some
complex forms such as mutual array recurrences. These kernels are only a
small fraction of the collection of kernels recognized by the XARK compiler. In
addition, these works do not address the analysis of the dependences between
the kernels in order to recognize compound kernels.

Callahan [1991] presents a framework for the parallelization of loops whose
computations can be represented as a generalization of a parallel prefix opera-
tion. The recognition algorithm uses the SCCs of the data-dependence graph to
compute composable symbolic functions that represent the computations car-
ried out in a loop. The approach handles loops without if-endif constructs, and
only recognizes kernels from the family of array recurrences, including mutual
array recurrences. Fisher and Ghuloum [1994] propose a similar framework
that is able to handle complex control flows and that recognizes the kernels

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:50 • M. Arenaz et al.

included in the families of inductions, reductions and array recurrences, includ-
ing mutual inductions and mutual array recurrences. However, the frameworks
require aggressive symbolic analysis and were not evaluated extensively using
well-known benchmark suites. Furthermore, their ability to discover kernels
characterized by irregular access patterns (e.g., irregular array reductions) has
not been demonstrated in practice.

Suganuma et al. [1996] present a reduction detection algorithm based
on the analysis of equations that are built using the information in the
data-dependence graph of the source code. First, for each assignment statement
in a loop body, an equation that captures the left-hand side, the right-hand side,
and the set of predicates that guard the execution of a statement is computed.
Second, the equations of the statements of each candidate SCC are merged and
the result is matched against a set of templates that characterize reductions.
Candidate SCCs are selected by preprocessing the loop with scalar privati-
zation techniques. Although complex control flows are handled, the scope of
application is limited to the family of reductions.

The symbolic differencing method proposed by Haghighat and Poly-
chronopoulos [1996] consists of executing a few iterations of a loop body
symbolically and saving the symbolic value of each expression at each iter-
ation in a difference table. Next, polynomial and geometric progressions are
recognized by interpolating the sequence of symbolic values of each expression.
The method requires extensive symbolic expression manipulation, but it is the
most powerful technique for the recognition of the family of inductions.

van Engelen [2001] addressed the recognition of conditional and non-
conditional inductions (and even factorials and exponentials) by building chains
of recurrences that represent the value of the induction variable across the it-
erations of a loop. Symbolic manipulation is used to rewrite the chains of re-
currences as the algorithm proceeds. Unlike the symbolic differencing method,
periodic sequences cannot be implicitly handled.

In contrast to techniques based on the analysis of the SCCs of the
data-dependence graph of the source code, other methods address recognition
through the SCCs of a graph that captures data flow information about
the program. Thus, Redon and Feautrier [1993] compute an ad-hoc graph
that captures the single assignment information of the source code. Such
graph is used to build a system of linear recurrence equations, which is later
simplified by computing closed-form expressions through pattern-matching
techniques. Due to its high computational cost, this approach is not applicable
in practice. In addition, only non-conditional kernels and array references
with linear access patterns are handled. Pinter and Pinter [1994] propose a
general algorithm based on the construction of the computation graph, which
is built from three copies of a dependence graph that represents the initial,
a middle and the final iteration of a loop. Recognition is based on matching
and replacing graph patterns in order to simplify the computation graph
until the most complex kernels can be detected. The simplification process is
governed by a grammar that defines the replacement rules as well as the order
in which these rules are applied. The approach recognizes reductions, array
recurrences and even some compound kernels such as reinitialized scalar and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:51

array reductions. In contrast to XARK, this method requires a preprocessing
stage that applies standard loop-level compiler optimizations (e.g., dead-code
and dead-store elimination, loop distribution and unrolling) in order to expose
the kernels in the computation graph. In addition, its main drawback is the
limited support for the analysis of if-endif constructs and arrays (e.g., irregular
access patterns are not handled).

Gerlek et al. [1995] present a demand-driven classification method mainly
devoted to discover generalized inductions in loop bodies. Recognition is ad-
dressed through the analysis of the SCCs of the data-dependence graph of the
Static Single Assignment (SSA) form. Like the GSA-based SCC classification
algorithm included in XARK, transfer functions that encode the kernels are
defined for each operator of the code in SSA form. Next, the kernels are dis-
covered as a result of applying the transfer functions during the execution of
a post-order traversal of the abstract syntax trees of the SSA statements. The
main drawback is that array references cannot be handled because the SSA
form only captures reaching definition information of scalar variables.

Overall, the XARK framework is able to recognize most of the kernels ad-
dressed in the other techniques, even in codes with complex control flows. Un-
like previous works, XARK has been extensively evaluated using well-known
benchmarks suites, not a small set of isolated loops. It should be noted that
XARK has been designed so that it can be easily extended to recognize new ker-
nels. This characteristic enabled the recognition of kernels that had not been
studied in the literature so far (e.g., segmented consecutively written/reduced
array) during the evaluation process.

8.2 Kernel Recognition at the Domain-Specific Concept Level

There is a vast literature about the automatic recognition of kernels that
capture the knowledge and the problem solving methods of specific applica-
tion domains. The approaches vary considerably in their application domain,
goal, methodology and status of implementation. In the scope of automatic
parallelization of scientific codes, Sabot and Wholey [1993], Bhansali and
Hagemeister [1995], Metzger [1995], di Martino and Iannello [1996], Keßler
[1996], and Keßler and Smith [1999] discover linear algebra operations (e.g.,
equation system solvers, FFT, matrix-matrix product) that are later replaced
with equivalent efficient parallel programs, possibly from a machine-specific li-
brary. Other techniques [Harandi and Ning 1990; Wills 1990; Kozaczynski et al.
1992; Paul and Prakash 1994] focus on software re-engineering, where search-
ing through large amounts of source code to locate relevant information is a
critical task. In order to emphasize the difference between domain-independent
and domain-specific automatic recognition, in the following, the terms kernel
and concept will be used, respectively.

According to the five-level classification presented in Figure 1, concept recog-
nition is the highest abstraction level in automatic recognition, and thus it en-
ables the most aggressive program transformations and optimizations. How-
ever, in order to handle all the complexity of real-world application domains,
two main issues must be addressed: the definition of a concept classification
hierarchy and the definition of an efficient search strategy. The hierarchy

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:52 • M. Arenaz et al.

captures the information about the subconcepts that compose a concept and
about the constraints on and between the subconcepts. Hierarchies are usu-
ally implemented as large libraries that guide the recognition process (e.g., the
number of concepts is 91 in Keßler [1996] and 492 in Metzger [1995]). Thus, it is
desirable to define an efficient search strategy that supports partial recognition
of programs in domains where knowledge is incomplete.

The XARK compiler provides an extensible, general-purpose kernel recog-
nition technique that can be used as a basis for the recognition of concepts in
the scope of different application domains. This article has presented experi-
mental evidence that a small hierarchy of kernels suffices to represent a wide
spectrum of applications. In addition, it shows that encoding the properties of
the kernels as transfer functions, enables the implementation of an efficient
and robust classification algorithm. Note that the code class built by XARK
supports partial recognition by classifying into unknown kernel classes those
parts of the program whose computations could not be recognized successfully.

8.3 Compiler Frameworks for Advanced Symbolic Analysis

In van Engelen et al. [2004] a unified framework for nonlinear dependence test-
ing and symbolic analysis (e.g., value range analysis and array region analysis)
is proposed. The core of the framework is the computation of chains of recur-
rences that represent the updating of the variables assigned in a loop body. An
algorithm that uses this information to recognize generalized inductions even
in the presence of complex if-endif constructs is described. The XARK com-
piler has been successfully applied to predict and understand the behavior of
memory hierarchy [Andrade et al. 2007] by building and manipulating chains
of recurrences that represent the memory accesses of array references. Thus,
extending XARK to fully support the chains of recurrences formalism would
widen its scope of application by providing a standard interface with other
compiler techniques. Furthermore, XARK builds a hierarchical representation
of the source code as kernels and dependence relationships between kernels,
which enables optimizing and parallelizing compilers to apply restructuring
techniques that go far beyond induction variable substitution. An example ap-
plication was presented in Arenaz et al. [2004], where XARK was used as a
powerful information-gathering infrastructure to generate parallel code based
on the recognition of kernels (e.g., irregular array assignment and irregular
array reduction).

Fahringer and Scholz [2000] presented a unified framework that collects
symbolic information about program variables at arbitrary program points.
The information includes variable values, assumptions and constraints about
such variable values, and conditions under which control flow reaches a pro-
gram statement. In addition, the framework recognizes inductions by solving a
system of equations that represent as first-order logic formulae the initial value
of the induction variable, its updating and the loop exit condition. In contrast,
the XARK compiler extracts program information at the kernel level, which en-
ables the characterization of the computations carried out in a set of statements,
not in a single statement only. Furthermore, XARK recognizes many important

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:53

kernels that are not addressed in Fahringer and Scholz [2000], specially array
kernels such as irregular reductions, array recurrences or consecutively written
arrays. Overall, XARK provides parallelizing and optimizing techniques with a
unified framework that enables more aggressive program transformations and
optimizations.

9. CONCLUSIONS

This article has presented and evaluated the XARK compiler framework for
automatic recognition of frequently used program constructs. XARK builds a
hierarchical representation of the program in terms of kernels and dependences
between kernels. The internals consist of two GSA-based demand-driven algo-
rithms that use the strongly connected components of the GSA graph and the
dependences between the SCCs as a guide for the analysis of the data depen-
dences and the control flow of a program. This form of analysis is clearly a
more general solution than previous approaches, which focus on the detection
of specific and isolated kernels and do not provide a general-purpose recognition
algorithm that covers scalar and array kernels in a unified manner.

The key characteristics of the demand-driven compiler framework con-
tributed in this paper are: (1) completeness, as the GSA-based algorithms recog-
nize kernels that involve integer-valued and floating-point-valued scalar and
array variables, as well as if-endif constructs that introduce complex control
flows; (2) robustness against different versions of a kernel; and (3) extensibil-
ity, as the addition of new recognition capabilities is accomplished through the
modification of a set of transfer functions that encode the characteristics of the
kernels.

The extensibility and the demand-driven nature of XARK widen its scope of
application beyond automatic kernel recognition. On the one hand, the transfer
functions of the GSA-based algorithms can be used in an optimizing compiler
as a common information-gathering phase to build an interface that meets the
specific information requirements of other compiler passes. Examples of inter-
faces that have already been integrated in XARK are some parallelizing code
transformations and an analytical model for the prediction of cache memory be-
havior. On the other hand, XARK supports the chains of recurrences formalism.
This characteristic provides a standard interface with other widely used com-
piler techniques, such as induction variable substitution, value range analysis,
array region analysis or data-dependence testing.

Another relevant contribution of this paper is the definition of a comprehen-
sive collection of kernels that cover both regular and irregular computations,
their organization into sets of families, and the identification of new kernels
that appear in real codes but whose study has not been addressed so far. Over-
all, this work has shown that a significant amount of the regular and irregular
computations carried out in full-scale real applications can be characterized
using a small set of kernels.

REFERENCES

AHO, A. V., LAM, M. S., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Principles, Techniques, and
Tools, 2nd ed. Addison-Wesley, Reading, MA.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:54 • M. Arenaz et al.

ALLEN, R. AND KENNEDY, K. 2002. Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach. Morgan-Kaufmann, San Francisco, CA.

AMMARGUELLAT, Z. AND HARRISON, W. L. 1990. Automatic recognition of induction and recurrence
relations by abstract interpretation. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. ACM, New York, 283–295.

ANDRADE, D., ARENAZ, M., FRAGUELA, B. B., TOURIÑO, J., AND DOALLO, R. 2007. Automated and
accurate cache behavior analysis for codes with irregular access patterns. Concur. Comput. Pract.
Exper. 19, 18 (Dec.), 2407–2423.

ARENAZ, M. 2003. Compiler framework for the automatic detection of loop-level parallelism.
Ph.D. dissertation, Department of Electronics and Systems, University of A Coruña. (Available
at http://www.des.udc.es/∼arenaz/papers/phdthesis arenaz.pdf.

ARENAZ, M., TOURIÑO, J., AND DOALLO, R. 2003. A GSA-based compiler infrastructure to extract
parallelism from complex loops. In Proceedings of the 17th International Conference on Super-
computing. (San Francisco, CA). ACM, New York, 193–204.

ARENAZ, M., TOURIÑO, J., AND DOALLO, R. 2004. Compiler support for parallel code generation
through kernel recognition. In Proceedings of the 18th International Parallel and Distributed
Processing Symposium (Santa Fe, NM). IEEE Computer Society Press, Los Alamitos, CA.

BALLANCE, R. A., MACCABE, A. B., AND OTTENSTEIN, K. J. 1990. The program dependence web: A
representation supporting control, data, and demand-driven interpretation of imperative lan-
guages. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, 257–271.

BANK, R. E. 2007. PLTMG package. Available at http://cam.ucsd.edu/∼reb/software.html.
BERRY, M., CHEN, D., KOSS, P., KUCK, D., POINTER, L., LO, S., PANG, Y., ROLOFF, R., SAMEH, A., CLEMENTI,

E., CHIN, S., SCHNEIDER, D., FOX, G., MESSINA, P., WALKER, D., HSIUNG, C., SCHWARZMEIER, J., LUE, K.,
ORZAG, S., SEIDL, F., JOHNSON, O., SWANSON, G., GOODRUM, R., AND MARTIN, J. 1989. The Perfect
Club benchmarks: Effective performance evaluation of supercomputers. Int. J. Supercomput.
Apps. 3, 3, 5–40.

BHANSALI, S. AND HAGEMEISTER, J. R. 1995. A pattern matching approach for reusing software
libraries in parallel systems. In Proceedings of Workshop on Knowledge Based Systems for the
Reuse of Program Libraries (Sophia Anthipolis, France).

BLUME, W., DOALLO, R., EIGENMANN, R., GROUT, J., HOEFLINGER, J., LAWRENCE, T., LEE, J., PADUA, D. A.,
PAEK, Y., POTTENGER, W. M., RAUCHWERGER, L., AND TU, P. 1996. Parallel programming with
Polaris. IEEE Computer 29, 12 (Dec.), 78–82.

CALLAHAN, D. 1991. Recognizing and parallelizing bounded recurrences. In Proceedings of the 4th
International Workshop on Languages and Compilers for Parallel Computing (Santa Clara, CA).
Lecture Notes in Computer Science, vol. 589. Springer-Verlag, New York, 169–185.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans. Program.
Lang. Syst. 13, 4 (Oct.), 451–490.

DI MARTINO, B. AND IANNELLO, G. 1996. PAP recognizer: A tool for automatic recognition of paral-
lelizable patterns. In Proceedings of the 4th International Workshop on Program Comprehension
(Berlin, Germany). IEEE Computer Society Press, Los Alamitos, CA, 164–174.

FAHRINGER, T. AND SCHOLZ, B. 2000. A unified symbolic evaluation framework for parallelizing
compilers. IEEE Trans. Parallel Dist. Syst. 11, 11 (Nov.), 1105–1125.

FAIGIN, K. A., WEATHERFORD, S. A., HOEFLINGER, J. P., PADUA, D. A., AND PETERSEN, P. M. 1994. The
Polaris internal representation. Int. J. Parall. Prog. 22, 5 (Oct.), 553–586.

FISHER, A. L. AND GHULOUM, A. M. 1994. Parallelizing complex scans and reductions. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(Orlando, FL). ACM, New York, 135–146.

GCC INTERNALS. GNU Compiler Collection Internals (GCC). Available at http://gcc.gnu.

org/onlinedocs/gccint.pdf.

GERLEK, M. P., STOLTZ, E., AND WOLFE, M. 1995. Beyond induction variables: Detecting and clas-
sifying sequences using a demand-driven SSA. ACM Trans. Program. Lang. Syst. 17, 1 (Jan.),
85–122.

HAGHIGHAT, M. R. AND POLYCHRONOPOULOS, C. D. 1996. Symbolic analysis for parallelizing compil-
ers. ACM Trans. Program. Lang. Syst. 18, 4 (July), 477–518.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

Extensible Framework for Automatic Recognition of Computational Kernels • 32:55

HARANDI, M. T. AND NING, J. Q. 1990. Knowledge-based program analysis. IEEE Softw. 7, 1, 74–81.
JOUVELOT, P. AND DEHBONEI, B. 1989. A unified semantic approach for the vectorization and par-

allelization of generalized reductions. In Proceedings of the 3rd International Conference on Su-
percomputing (Heraklion, Crete). ACM, New York, 186–194.

KEßLER, C. W. 1996. Pattern-driven automatic parallelization. Scient. Progr. 5, 3, 251–274.
KEßLER, C. W. AND SMITH, C. 1999. The SPARAMAT approach to automatic comprehension of

sparse matrix computations. In Proceedings of the 7th International Workshop on Program Com-
prehension (Pittsburgh, PA). IEEE Computer Society Press, Los Alamitos, CA, 200–207.

KNOBE, K. AND SARKAR, V. 1998. Array SSA form and its use in parallelization. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, CA). ACM, New York, 107–120.

KNOBE, K. AND SARKAR, V. 2000. Enhanced parallelization via analyses and transformations on
Array SSA form. In Proceedings of the 8th International Workshop on Compilers for Parallel
Computers (Aussois, France).

KOZACZYNSKI, W., NING, J. Q., AND ENGBERTS, A. 1992. Program concept recognition and transfor-
mation. IEEE Trans. Softw. Eng. 18, 12, 1065–1075.

LIN, Y. AND PADUA, D. A. 1998. On the automatic parallelization of sparse and irregular Fortran
programs. In Proceedings of the 4th International Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers (Pittsburgh, PA). Lecture Notes in Computer Science,
vol. 1511. Springer-Verlag, New York, 41–56.

MERRILL, J. 2003. GENERIC and GIMPLE: A new tree representation for entire func-
tions. In Proceedings of the 2003 GCC Developers Summit. 171–180. (Available at
http://www.gccsummit.org/2003.

METZGER, R. 1995. Automated recognition of parallel algorithms in scientific applications. In
IJCAI-95 Workshop Program Working Notes: ”The Next Generation of Plan Recognition Systems”.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan-Kaufmann, San
Francisco, CA.

PAUL, S. AND PRAKASH, A. 1994. A framework for source code search using program patterns. IEEE
Trans. Softw. Eng. 20, 6, 463–475.

PINTER, S. S. AND PINTER, R. Y. 1994. Program optimization and parallelization using idioms. ACM
Trans. Program. Lang. Syst. 16, 3 (May), 305–327.

POTTENGER, W. M. AND EIGENMANN, R. 1995. Idiom recognition in the Polaris parallelizing compiler.
In Proceedings of the 9th International Conference on Supercomputing (Barcelona, Spain). ACM,
New York, 444–448.

REDON, X. AND FEAUTRIER, P. 1993. Detection of recurrences in sequential programs with loops.
In Proceedings of the 5th International Parallel Architectures and Languages Europe Conference
(Munich, Germany). Lecture Notes in Computer Science, vol. 694. Springer-Verlag, New York,
132–145.

SAAD, Y. 1994. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations (Version 2). (Avail-
able at http://www.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html.

SABOT, G. AND WHOLEY, S. 1993. CMAX: A Fortran translator for the connection machine system.
In Proceedings of the 7th International Conference on Supercomputing (Tokyo, Japan). ACM, New
York, 147–156.

SPEC. SPEC CPU2000. Standard Performance Evaluation Corporation. Available at
http://www.spec.org/cpu2000/.

SUGANUMA, T., KOMATSU, H., AND NAKATANI, T. 1996. Detection and global optimization of reduction
operations for distributed parallel machines. In Proceedings of the 10th International Conference
on Supercomputing (Philadelphia, PA). ACM, New York, 18–25.

TARJAN, R. E. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2 (June),
146–160.

TU, P. AND PADUA, D. A. 1995. Gated SSA-based demand-driven symbolic analysis for parallelizing
compilers. In Proceedings of the 9th International Conference on Supercomputing (Barcelona,
Spain). ACM, New York, 414–423.

VAN ENGELEN, R. 2001. Efficient symbolic analysis for optimizing compilers. In Proceedings of
the 10th International Conference on Compiler Construction (Genova, Italy). Lecture Notes in
Computer Science, vol. 2027. Springer-Verlag, New York, 118–132.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

32:56 • M. Arenaz et al.

VAN ENGELEN, R., BIRCH, J., SHOU, Y., WALSH, B., AND GALLIVAN, K. 2004. A unified framework for
nonlinear dependence testing and symbolic analysis. In Proceedings of the 18th International
Conference on Supercomputing (Saint Malo, France). ACM, New York, 106–115.

WILLS, L. M. 1990. Automated program recognition: A feasibility demonstration. Artif. In-
tell. 45, 1-2, 113–171.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley, Reading,
MA.

WU, P., COHEN, A., HOEFLINGER, J., AND PADUA, D. A. 2001. Monotonic evolution: An alternative to
induction variable substitution for dependence analysis. In Proceedings of the 15th International
Conference on Supercomputing (Sorrento, Italy). ACM, New York, 78–91.

ZHANG, F. AND D’HOLLANDER, E. H. 1994. Enhancing parallelism by removing cyclic data depen-
dencies. In Proceedings of the 6th International Parallel Architectures and Languages Europe
Conference (Athens, Greece). Lecture Notes in Computer Science, vol. 817. Springer-Verlag, New
York, 387–397.

ZIMA, E. V. 1986. Automatic construction of systems of recurrence relations. USSR Comput.
Math. Math. Phys. 24, 11-12, 193–197.

ZIMA, E. V. 1995. Simplification and optimization transformations of chains of recurrences. In
Proceedings of the 8th International Symposium on Symbolic and Algebraic Computation (Mon-
treal, Ont., Canada). ACM New York, 42–50.

Received December 2006; revised July 2007 and December 2007; accepted January 2008

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 32, Pub. date: October 2008.

